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ABSTRACT 

Non-verbal communication involves di rent channels, as gestures, to communicate 
di rent information. esent study ai ms investigating the electrophysiological 
(EEG) correlates underlying the use of tive, social, and informative gestures during 
gesture observation by an encoder (who observed to reproduce the gestures successively) 
and decoder (who simply observed the gestures). Mirroring mechanisms were considered 
for a gesture observation task. Results showed an increase of frontal alpha, delta, and 
theta brain responsiveness and intra-brain conn
and of posterior (temporo-parietal) alpha activity and alpha and delta intra-brain 
connectivity for informative ones. Concerning inter-agents’ role, similar responses were 
found for all gestures. Regarding gesture valence, an increase of delta and theta activity 
was observed for positive gestures on the left cerebral side. is study, therefore, revealed 
the function of gestures ng individuals’ brain activity, 
showing the presence of mirroring mechanisms underlying gesture observation. 
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1. INTRODUCTION 
  

Among the various bodily forms of expression, gestures are configured as a set 
of motor actions that characterize individuals’ verbal and non-verbal 
communication (McNeill, 1992, 2013), allowing, emphasizing, and 
completing the transmission of different information (Cabrera et al., 2017). 
Given gestures’ multifunctionality, several neuroscientific studies have focused 
on brain patterns and cognitive processes underlying gesture observation 
(Cabrera et al., 2017, 2020) demonstrating the presence of different cerebral 
areas involved in gesture perception (Caspers et al., 2010; Chong et al., 2008; 
Molenberghs et al., 2012). 

As revealed by different studies (Cabrera et al., 2020; Schippers et al., 
2010), gesture observation activates specific cerebral networks (Caspers et al., 
2010), such as the mirror neural system, which appears to support actions 
predictive and understanding processes (Balconi & Fronda, 2020a,b, 2021a,b; 
Costantini et al., 2005; Kilner & Blakemore, 2007; Rizzolatti & Sinigaglia, 
2010; Urgen et al., 2013). Specifically, certain brain areas, such as fronto-
parietal regions, appear to be involved in mirroring mechanisms underlying 
actions understanding (Costantini et al., 2005), providing a direct link between 
gesture observation and execution (Balconi et al., 2020, 2021; Balconi & 
Fronda, 2020a,b, 2021a,b; Fronda & Balconi 2020; Holle et al., 2008).  

In this perspective, the direct bond between gesture perception and 
production by mirroring function provides the involvement of sensorimotor 
processes related to previous experiences with the observed gesture (Hamilton 
et al., 2004; Hecht et al., 2001; Quandt et al., 2012, 2013; Schütz-Bosbach & 
Prinz, 2007). The involvement of sensorimotor processes during gesture 
observation was also demonstrated by different studies that have used 
electroencephalography (EEG) to investigate the brain correlates underlying 
gesture perception (Balconi & Fronda, 2020b; Muthukumaraswamy et al., 
2004; Pineda, 2005; Quandt et al., 2012, 2013). Specifically, EEG, compared 
to neuroimaging techniques, has proved to be a good neuroscientific tool for 
the recording of individuals’ neural activity (Balconi at al., 2018a; Balconi & 
Fronda, 2020a,b, 2021a,b; Balconi & Molteni, 2016; Koike et al., 2015) by 
obtaining a better temporal resolution and providing useful information on 
functional and local brain networks underlying gesture perception (Buzsáki & 
Draguhn, 2004; Muthukumaraswamy et al., 2004; Pineda, 2005; Quandt et 
al., 2012, 2013; Singer, 1999). 

About gesture observation, as demonstrated by previous studies (Balconi 
& Fronda, 2020b; Muthukumaraswamy et al., 2004; Pineda, 2005; Quandt et 
al., 2012, 2013), it appears to be associated with changes in both high- and 
low-frequency bands oscillations. 
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Specifically, high-frequency bands, such as alpha (8–13 Hz) and beta (14–
20 Hz), are particularly involved in sensorimotor mechanisms underlying 
gesture observation (Balconi & Fronda, 2020b; Mizelle et al., 2010; Puzzo et 
al., 2011; Quandt et al., 2012; Van Ede et al., 2011) and, in some specific 
characteristics, like familiarity or speed profile (Wriessnegger et al., 2013) of 
the observed gesture; while low-frequency bands, such as delta (0.5–4 Hz) and 
theta (4–8 Hz), are more implicated in emotional processes underlying gesture 
perception (Balconi & Fronda, 2020b; Holle et al. 2012; Knyazev 2007). 

In the present study, the use of EEG in hyperscanning allowed us to 
investigate the brain responsiveness and intra-brain connectivity of two 
individuals involved in a non-verbal communicative exchange: the encoder, 
who observed the gesture to be subsequently reproduced, and the decoder, who 
observed the gesture to be subsequently received. In particular, the use of 
hyperscanning paradigm allows us to simultaneously record the neural activity 
of the two individuals involved in the exchange, providing the possibility to 
observe the potential presence of differences or similarities in neural responses 
(Liu et al., 2015; Ruby & Decety, 2004; Stone et al., 2019), during the 
observation of different types of gesture in term of their category and valence, 
such as affective, social, and informative gestures of positive and negative 
valence.  

The use of hyperscanning allows investigating individuals’ functional 
connectivity that reflects the correlation between two time series (Friston, 
2011) providing information about the activation of inter-agents’ individuals 
and events spatially remote (Balconi et al., 2017b; Balconi & Fronda 2020a,b, 
2021a,b; Chaudhary et al., 2011; Zhao et al., 2014). In particular, functional 
connectivity allows exploring intra-brain links, showing the connectivity within 
brain regions in single subjects (encoder and decoder) during the non-verbal 
communication (Balconi & Fronda 2020a,b, 2021a; Falk & Bassett, 2017; 
Simony et al., 2016) characterized by the use of affective, social and 
informative gestures with positive or negative valence. Functional connectivity 
allows information to be obtained on the synchronic and diachronic aspects 
underlying gestural communication (Vanutelli et al., 2016) that produces a 
continuous better synchronization, increasing the intra-brain links between 
brain areas, creating implicit coupling mechanisms in response to mirroring for 
gesture observation (Balconi & Pagani, 2015; Liu et al., 2015). 

In particular, affective gestures are aimed to transmit emotional content or 
to influence interlocutor emotional states (Balconi & Fronda 2020a,b, 
2021a,b; Balconi et al., 2020, 2021; Fronda & Balconi 2020; Tomasello et al., 
2005); social gestures are aimed at establishing a social relationship with the 
interlocutor (Balconi & Fronda, 2020a,b, 2021a,b; Balconi et al., 2020, 2021; 
Fronda & Balconi, 2020; Bressem & Müller, 2017; Kendon, 2017), and 
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informative gestures are aimed at transmitting information relating to the 
description of a mental or physical state (Balconi & Fronda 2020a,b, 2021a,b; 
Balconi et al., 2020, 2021; Fronda & Balconi, 2020; Enfield et al., 2007; Kita, 
2009). With respect of valence, positive gestures, instead, are aimed at 
initiating or establishing a relationship with the interlocutor or communicating 
positive states, while negative ones are aimed to interrupt a relationship or 
communicate negative states. Regarding gestures valence, different previous 
studies, according to the dual system model of neural signatures, have 
demonstrated a different frontal asymmetry in response to positive and negative 
gestures observation (Balconi et al., 2015; Balconi & Fronda 2020a,b, 2021a,b; 
Balconi et al., 2020,2021; Davidson 1992; Fronda & Balconi, 2020).  

In light of this evidence, firstly, considering gestures category, we expected 
to observe an increase of frontal brain responsiveness and intra-brain 
connectivity of high-frequency bands, which are more involved in sensorimotor 
processes related to gesture observation (Balconi & Fronda, 2020b; Mizelle et 
al., 2010; Puzzo et al., 2011; Quandt et al., 2012; Schneider et al., 2008; Van 
Ede et al., 2011; Yuval-Greenberg & Deouell, 2007), and of low-frequency 
bands, which are more involved in emotional processes related to gesture 
perception (Balconi & Fronda 2020b; Knyazev, 2007), during the observation 
of social and affective gestures, compared to informative ones. Indeed, 
considering the nature of social and affective gestures, frontal areas are the most 
implicated in socio-emotional and relational processes (Balconi & Caldiroli, 
2011; Balconi & Bortolotti, 2012, 2013; Balconi & Fronda, 2020a,b, 2021a,b; 
Balconi et al., 2011, 2012, 2020, 2021; Fronda & Balconi, 2020; Rameson & 
Lieberman, 2009; Rosso et al., 2004). Furthermore, we expected to observe a 
decrease of alpha power (increased brain activity), and an increase of delta and 
theta brain responsiveness and intra-brain connectivity in temporo-parietal area 
according to the observation of informative gestures, which require more 
involvement of attentional processes (Balconi & Fronda, 2020b; Perry et al., 
2011; Rushworth et al., 2001). 

Secondly, considering instead gesture valence, we expected to observe, for 
affective, social, and informative gestures, a different frontal asymmetry in 
relation to positive and negative gesture (Balconi & Fronda, 2020a,b, 2021a,b; 
Balconi et al., 2015, 2020, 2021; Davidson, 1992; Fronda & Balconi, 2020). 
In particular, we expected to observe an increase of delta and theta right frontal 
activity during the observation of negative gestures which, given their purpose, 
can induce individuals to an “avoidance” behaviour; while, an increase of delta 
and theta left frontal activity during the observation of positive gestures which 
induce individuals to an “approach” behavior (Balconi & Fronda, 2020b; De 
Stefani et al., 2013).  

Finally, considering the inter-agents role (encoder or decoder), we 
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expected to observe a similar brain responsiveness and intra-brain connectivity 
both in the encoder and in the decoder, due to the presence of mirror 
mechanisms during others’ gesture observation, that allow individuals to 
understand other mental states, perceiving themselves in joint action and 
developing “resonance mechanisms” and implicit brain coupling processes 
(Balconi & Fronda, 2020b, 2021a; Balconi et al., 2018b; Holle et al., 2008; 
Lindenberger et al., 2009). 
 
 
 
2.  METHODS 
 
2.1 Participants 
 
The present study was conducted on a sample of thirteen dyads of participants 
(Mage = 23.33; SDage = 2.67) of the same sex. Specifically, dyads were composed 
by individuals not involved in a friendship or familiar relation. For each dyad, 
two different roles (encoder or decoder) were randomly assigned to 
participants. For the participants’ recruitment, specific inclusion and exclusion 
criteria were selected. In particular, inclusion criteria requested the recruitment 
of individuals aged between 18 and 40 years, with normal or correct visual 
acuity and normal manual ability. Instead, the following exclusion criteria have 
been adopted: the presence of clinical or neurological disorders and the 
experience of stressful events in the last 6 months. The conduction of the 
research was approved by the local ethics committee of the Department of 
Psychology of the Catholic University of the Sacred Heart and followed the 
principles and guidelines of the Helsinki Declaration. In addition, participants 
took part in the experiment only after having signed the informed consent. 
 
2.2 Procedure 
 
The conduction of the research provided that participants were arranged sitting 
facing each other at a distance of 60 cm from a computer, used for the 
administration of 60 videos randomly shown in three blocks. 

Firstly, participants were asked to observe the 60 videos, administered 
through the use of E-Prime 2.0 software (E-prime2 software, Tools Psychology 
Software Inc., Sharpsburg, Pennsylvania, USA). These videos reproduced 10 
positive social gestures, which aimed to start or maintain a social relationship 
with the interlocutor; 10 negative social gestures, which aimed to interrupt the 
relationship with the interlocutor; 10 positive affective gestures, aimed at 
communicating an emotional positive state to the interlocutor; 10 negative 
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affective gestures, aimed at transmitting a negative emotional state to the 
interlocutor; 10 positive informative gestures, and 10 negative informative 
gestures,  used to describe a good or bad physical or psychological state to the 
interlocutor. For informative gestures, the positive or negative valence was 
determined by a context sentence (for example the informative gesture in which 
the encoder move the hand upwards with the palm up indicating to the 
encoder to stand up was preceded by this context: “On the train, someone 
occupies a reserved place”) shown before the video presentation to allow 
participants to understand the gesture meaning better (Balconi & Fronda, 
2020a,b, 2021a,b; Balconi et al., 2020, 2021; Fronda & Balconi, 2020).  

Specifically, videos reproduced a non-verbal communicative interaction 
between two actors, one of whom reproduced a gesture (encoder), which could 
be affective, social and informative of positive or negative valence, towards 
another individual who received the gesture (decoder).  

Secondly, participants were asked to reproduce the gestures observed 
according to their roles. In particular, the encoder had to reproduce the gesture 
observed towards the decoder, which was only asked to receive the gesture. For 
the task administration, the following structure was used, consisting of: the 
presentation of an empty screen (2 sec.), the presentation of a slide containing a 
contextual sentence to allow individuals to better understand the meaning of 
the gesture observed (4 sec.), the video with the gesture to be observed (3 sec.), 
the presentation of an inter-stimulus (4 sec.), and the presentation of a slide 
containing a “go” signal to inform participants to reproduce the gesture (4 sec.) 
(Figure 1). 

Videos reproducing gestures were previously validated by 14 judges (Mage 
= 28.34, SDage = 0.04), using a seven-point Likert scale, for the assessment of 
the following gestures’ characteristics: commonality, frequency of use, 
complexity, social significance, familiarity, and emotional impact (Balconi et 
al., 2020, 2021; Balconi & Fronda, 2020a,b, 2021a,b; Fronda & Balconi, 
2020). Statistical analyses were subsequently carried out on the following scores 
to define the categories of stimuli and verify the homogeneity of the previous 
characteristics. Similarly, experimental subjects were submitted to the same 
evaluation of gesture after viewing them (after gesture reproduction). Similar 
effects were found for the subjects, as observed for judges. 
 
2.3 EEG recording and analysis 
 
For the recording of the EEG signal, two 16-channel EEG systems were used 
(V-AMP: Brain Products, München; LiveAmp: Brain Products, GmbH, 
Gliching, Germany). Specifically, with the use of two ElectroCaps, electrodes 
were placed on individuals’ scalps on F3, F1, Fz, F2, F4, T7, T8, C3, Cz, C4, 
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P3, P1, P2, P4, O1, and O2 positions (Figure 2). Furthermore, an EOG 
electrode was placed on the external canthi (Balconi & Fronda, 2020a,b, 
2021a,b). 

For each individual, 5 kΩ electrode impedance was monitored for data 
collection, and 1000 Hz was used for data sampling with a 0.01–200 Hz input 
filter and a 50 Hz notch filter. A 0.5–40 Hz bandpass filter was used to filter 
the acquired data offline. A common offline average reference was calculated 
(Ludwig et al., 2009) to reduce problems associated with signal-noise. For 
signals evaluation, portions of data containing artifacts were excluded, and an 
algorithm using regression analysis in combination with the artifacts average 
was utilized for ocular artifacts correction. Finally, data were extracted into low 
and high-frequency bands, as delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 
Hz), and beta (14–20 Hz) (Keil et al. 2003). The mean EEG power was 
calculated by averaging data related only to the gesture observation phase, using 
a 3-second segment. 
 
 
 

 
Figure 1. The figure shows the structure of each block of the task 
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Figure 2. The figure shows the EEG electrode placement in: F3, F1, Fz, F2, F4, T7, 
C3, Cz, C4, T8, P3, P1, P2, P4, O1, O2 

 
 
 

3. DATA ANALYSIS  
  
Related to EEG dependent measures, two sets of analyses were performed. The 
first ANOVA applied on raw data of single subject was aimed to test the effect 
of independent measures on each participants’ frequency bands. The second set 
of analyses considered the intra-brain connectivity calculation for each 
participant on each frequency band. 

In particular, to obtain intra-brain connectivity, the partial correlation 
coefficient Πij was computed by normalizing the inverse of the covariance 
matrix Γ = Σ −1: 

 
Γ = (Γ ij ) = Σ −1 inverse of the covariance matrix 
Πij = (-Γij)/√ΓiiΓjj partial correlation matrix 
 
Then, a second ANOVA was applied to these intra-brain measures.  
For ANOVAs, these independent measures were used: Role 

(encoder/decoder, 2), Valence (positive/negative, 2), Lateralization (left/right, 
2), Gesture (social/affective/informative, 3), and ROI (regions of interest, 4). 
Four ROI were calculated for left/right homologous sides for frontal (F3,F1- 
F2,F4), central (C3,C4), temporo-parietal (T7,P1-T8,P2), and occipital 
channels (O1,O2; Balconi & Fronda, 2020a,b, 2021a,b).  

For the ANOVAs tests, Greenhouse–Geisser epsilon was used for the 
correction of freedom degrees. 
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Post-hoc comparisons (contrast analyses) were applied to the data, and a 
Bonferroni test was applied for multiple comparisons. In addition, the 
normality of the data distribution was preliminary tested (kurtosis and 
asymmetry tests). 

The normality assumption of the distribution was supported by these 
preliminary tests (Balconi & Fronda, 2020a,b, 2021a,b; Balconi et al., 2020, 
2021; Fronda & Balconi, 2020). 
 
 
 
4. RESULTS  
 
4.1 Brain activity on frequency bands   
 
4.1.1 Delta band  
 
About delta, ANOVA shows a significant Valence X Lateralization X Gesture X 
ROI interaction effect (F[6,150] = 11.32; p < .001; η2 = 0.38). We only report 
significant effects for post-hoc analyses. In particular, post-hoc comparisons 
revealed an increase of delta activity in the frontal area compared to others for 
affective and social gestures compared to informative gestures (for all post-hoc 
comparisons p ≤ .001). Furthermore, an increase of delta activity was observed 
for positive gestures in the left frontal side compared to the right one (F[1,26] = 
10.34; p ≤ .001; η2 = 0.37) (Figure 3a).  
 
4.1.2 Theta band 
 
About theta, ANOVA reported a Valence X Lateralization X Gesture X ROI 
interaction effect (F[6,150] = 10.78; p < .001; η2 = 0.37). Post-hoc 
comparisons revealed an increase of theta activity in the frontal area compared 
to others for affective and social gestures compared to informative ones (for all 
post-hoc comparisons p ≤ .001). Furthermore, an increase of theta activity was 
observed in the left frontal side compared to the right one (F[1,26] = 8.14; p < 
.001; η2 = 0.34) for positive gestures (Figure 3b).  
 
4.1.3 Alpha band  
  
About alpha, as revealed by ANOVA, a Gesture X ROI interaction effect 
(F[6,150] = 11.09; p < .001; η2 = 0.39) was found. In particular, post-hoc 
comparisons revealed an increase of alpha brain activity (decrease of alpha 
power) in the frontal area for affective and social gestures compared to 
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informative gestures (for all post-hoc comparisons p ≤ .001) and in the 
posterior (temporo-parietal) area for informative gestures compared to affective 
and social gestures (for all post-hoc comparisons p ≤ .001) (Figure 3c).  
 
4.1.4 Beta band  
 
About the beta band, ANOVA reveals no significant effect.  

 
Figure 3. (a, b) Histogram of delta and theta brain activity for positive and negative 

gestures in frontal and posterior left and right side. (c) Histogram of alpha brain activity 
for affective, social and informative gestures in frontal, central, temporo-parietal and 

occipital area. For figures a,b,c bars represent +-1SE. Stars mark statistically significant 
(p<.05) pairwise comparisons 

 
 
4.2 Intra-brain connectivity analysis 
 
4.2.1 Delta band  
 
For delta band, ANOVA revealed a significant Gesture X ROI interaction 
effect (F[6,150] = 9.12; p < .001; η2 = 0.35). In particular, post-hoc 
comparisons showed an increase of intra-brain connectivity in frontal areas 
with respect to others for affective and social gestures and in posterior 
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(temporo-parietal) areas compared to others for informative ones (for all post-
hoc comparisons p ≤ .001) (Figure 4a, d).  
 
4.2.2 Theta band  
 
For theta band, ANOVA shows a significant Gesture X ROI interaction effect 
(F[6,154] = 10.78; p < .001; η2 = 0.37). Particularly, post-hoc comparisons 
revealed an increase of intra-brain connectivity in frontal areas compared to 
other areas for affective and social gestures (for all post-hoc comparisons p ≤ 
.001) (Figure 4b, e). 
 
4.2.3 Alpha band  
 
For alpha band, ANOVA shows a Gesture X ROI interaction effect (F[6,150] 
= 10.11; p < .001; η2 = 0.37). In particular, post-hoc comparisons revealed an 
increase of intra-brain connectivity in frontal areas with respect to other areas 
for affective and social gestures, and in posterior areas with respect to others for 
informative gestures (for all post-hoc comparisons p ≤ .001) (Figure 4c, f). 
 
4.2.4 Beta band  
 
About the beta band, ANOVA reveals no significant results. 
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Figure 4. (a, b, c) Histogram of delta, theta and alpha intra-brain connectivity for 
affective, social and informative gestures in frontal, central, temporo-parietal and 

occipital areas. For figures a,b,c bars represent ∓1SE. Stars mark statistically significant 
(p<.05) pairwise comparisons. (d, e, f) Delta, theta and alpha intra-brain connectivity 
(red area) representation, from left to right, for affective, social and informative gestures 
 
 
 
5. DISCUSSION  
 
The present study aimed to investigate the neural mechanisms that underlie the 
observation of positive and negative affective, social, and informative gestures 
in both the encoder and decoder. 

Specifically, the brain responsiveness and intra-brain connectivity of both 
individuals were investigated in order to observe possible differences or similar 
neural mechanisms during the observation of different categories of gestures. In 
this regard, we expected to observe, firstly, a different modulation of low- and 
high-frequency bands activity and intra-brain connectivity concerning the 
category of gestures. Secondly, we expected to find a different cerebral frontal 
asymmetry according to gestures valence. Finally, we should reveal similar 
neural responses in frontal and parietal areas during the observation of gestures 
in both the encoder and decoder, due to the presence of similar mirroring 
mechanisms in response to the observation task.  

Firstly, regarding the results of frequency band analyses, according to the 
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first hypothesis, specific neural responses have emerged during the observation 
of affective, social, and informative gestures.  

In particular, an increase in brain responsiveness for alpha, delta, and 
theta activity was observed in the frontal region during the observation of 
affective and social gestures. Regarding this first evidence, the decrease in alpha 
power in the frontal region for the observation of affective and social gestures 
could be due to the implementation of sensorimotor processes that are 
associated with individuals’ previous personal experiences with these types of 
gestures (Balconi & Fronda, 2020b; Mizelle et al., 2010; Puzzo et al., 2011; 
Quandt et al., 2012; Schneider et al., 2008). Indeed, affective and social 
gestures, given their more interactional and relational nature, can be more 
easily connected to the presence of previous personal affective and social 
experiences. 

Instead, the increased activation of delta and theta bands in the frontal 
area during the observation of affective and social gestures could be related to 
individuals’ abilities to respond emotionally to relational and social situations 
(Balconi & Bortolotti, 2012, 2013; Balconi & Caldiroli, 2011; Balconi et al., 
2011, 2014; Balconi & Fronda 2020a,b; Rameson & Lieberman, 2009), 
through the use of affective and empathic processes (Balconi & Vanutelli, 
2017; Balconi et al., 2015; Mu et al., 2008). Indeed, as revealed by previous 
research, the increased activation of the frontal area according to affective and 
social gestures highlighted the involvement of emotional, empathic and mental 
model processes (Balconi & Fronda, 2020a,b; Balconi & Fronda, 2021a,b; 
Balconi et al., 2014, 2020, 2021; Fronda & Balconi, 2020; Konvalinka et al., 
2014; Rameson & Lieberman, 2009; Rosso et al., 2004). Frontal areas appear 
to be involved in the regulation of emotional expression and in the 
understanding of the emotional states of others (Balconi & Fronda, 2020b; 
Bressem & Müller, 2017; Calbris, 2011; Fragopanagos et al., 2005; Fronda & 
Balconi, 2020; Kendon, 2017; Liotti & Mayberg, 2001), which are more 
implicated in this type of gesture. In particular, affective gestures are supported 
by specific frontal regions, such as the dorsolateral prefrontal cortex (DLPFC), 
which regulates processes of emotional sharing and mutual intentionality, 
prosocial, and empathic behavior as well as emotional attunement (Adolphs, 
1999; Balconi & Canavesio, 2013, 2014; Balconi et al., 2020, 2021; Greene & 
Haidt, 2002; Fronda & Balconi, 2020). 

Moreover, DLPFC is also involved in the management of the 
interpersonal relationship and theory of mind processes (Balconi et al., 2017a, 
2020, 2021; Fronda & Balconi, 2020; Kalbe et al., 2010; Petrican & 
Schimmack, 2008). 

As affective gestures, social ones result to be mediated by frontal areas, 
such as the superior frontal gyrus (SFG), that appear to be involved in self-
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awareness processes and the monitoring of our and others behavior (Balconi et 
al., 2020, 2021; Crivelli & Balconi, 2017; Fronda & Balconi, 2020; Nakamura 
et al., 1998; Shima & Tanji, 2000). 

Considering, instead, informative gesture observation, aimed at 
communicating information to direct interlocutor attention towards a specific 
object in the proximal or distal environment, an increase of alpha brain 
responsiveness (decrease of alpha power) was observed in temporal-parietal 
areas. This result could be due to the involvement of individuals’ attentional 
processes (Balconi & Fronda 2020a,b; Posner et al., 1984; Rushworth et al., 
2001) required by this category of gestures. 

Secondly, considering gesture valence, according to the second hypothesis, 
a different frontal brain responsiveness for delta and theta bands, that are more 
involved in emotional processes underlying gesture perception (Balconi & 
Fronda 2020a,b, 2021a,b; Holle et al., 2012; Knyazev, 2007), has emerged 
during the observation of positive and negative gestures for all three gestures 
categories (social, affective, and informative).  

This result is supported by the model of double neural signatures of 
Davidson’s emotional experience (Tomarken et al., 1992), also supported by 
subsequent studies (Balconi & Fronda, 2020a,b, 2021a,b; Balconi et al. 2015, 
2020, 2021; Fronda & Balconi, 2020; Wager et al., 2003), that have observed 
an increase of the left frontal activity for positive emotions and of the right 
frontal activity for negative ones. 

This frontal asymmetry may depend on transient or stable personality 
traits and the approach or affective avoidance styles (Davidson, 1993; Davidson 
& Irwin, 1999; Tomarken et al., 1990, 1992; Wager et al., 2003). 

Considering, instead, intra-brain connectivity results, according to our 
hypothesis, an increase of intra-brain connectivity for alpha, delta, and theta 
bands was observed in the frontal area during the observation of affective and 
social gestures. Furthermore, an increase of intra-brain connectivity of alpha 
and delta bands was also observed in temporal-parietal regions during the 
observation of informative gestures.  

The increase of intra-brain connectivity in frontal regions for affective and 
social gestures and in temporal-parietal regions for informative ones highlights 
the presence of similar internal connectivity in both the encoder and decoder, 
who did not differ from each other in their intra-brain connectivity.  

In general, the increase of intra-brain connectivity can be considered as 
advantageous at an evolutionary level because it implies the mediation of 
different sensorimotor systems and higher cognitive faculties supported by 
some frontal regions. In particular, the different modulation of cortical activity 
concerning the category of observed gestures may be due to the involvement of 
the mirroring processes, supported by specific brain regions, that are involved 
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in perceiving and observing gestures (Balconi & Fronda, 2020a; Rizzolatti et 
al., 2001; Rizzolatti & Sinigaglia, 2010). 

Specifically, these mirroring mechanisms, supported mainly by the 
frontoparietal circuit, which regulate behavioral and social cognition (Rizzolatti 
& Sinigaglia, 2010), are implicated in the coupling between action observation 
and execution (Balconi & Fronda, 2020b; Rizzolatti et al., 1996, 2001), 
allowing the comprehension of the motor intention underlying actions 
(Gentilucci et al., 1983). Moreover, mirroring mechanisms, allowing the 
imitation and the understanding of the interlocutors behaviors (Balconi & 
Fronda 2020a,b, 2021a; Buccino et al., 2004; Iacoboni et al., 2005; Rizzolatti 
& Craighero, 2004; Rizzolatti & Luppino, 2001), lead individuals to simulate 
the others embodied experiences by activating the same neural mechanisms 
(Balconi & Fronda, 2020a,b, 2021a,b; Buccino et al., 2001; Keysers & 
Gazzola, 2014; Kohler et al., 2002; Rizzolatti & Sinigaglia, 2010), creating 
implicit coupling mechanisms between the individuals involved in the 
interaction (Balconi & Fronda, 2020a,b, 2021a,b; Rizzolatti & Sinigaglia, 
2010; Shepherd et al., 2009). 

In addition to the presence of mirror mechanisms, the increase of intra-
brain connectivity in the frontal and parietal areas could be due to the 
involvement of these regions in the sensorimotor processes involved in gestures 
observation (Balconi & Fronda, 2020b; Rizzolatti & Fogassi, 2014; Rizzolatti 
& Sinigaglia, 2010). Indeed, as demonstrated by previous studies (Balconi et 
al., 2017; Kasess et al., 2008; Nguyen et al., 2014), frontal regions are more 
implicated in the processes of gestures imagination and intentionalization, 
while the parietal ones are more implicated in attentional processes of 
preparation of movements and imagination of motor actions (Balconi et al., 
2017; Balconi & Fronda, 2020a,b; Balconi et al., 2020, 2021; Rushworth et 
al., 1997).  

Finally, regarding this increase of intra-brain connectivity, it has emerged 
both in the encoder and the decoder underlying how gestures observation 
represents a common mechanism, regardless of just observation or production. 

This result highlights the presence of possible mirroring mechanisms both 
in the encoder and the decoder, which almost activate specific localized 
processes in some brain areas during the observation of the different gesture 
types. 

Indeed, as shown by previous studies (Balconi & Fronda, 2020b; Fronda 
& Balconi, 2020; Holle et al., 2008), the activation of similar brain patterns 
that support gestures observation occurs during the actions of coding and 
decoding. 

The results of the present study, therefore, show that gestures observation 
represents a common action among interacting individuals, as evidenced both 
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by the increase of brain responsiveness and intra-brain connectivity in the same 
brain areas both in the encoder and in the decoder, that underline the presence 
of mirror, resonant and common mechanisms. These processes turn out to be 
the basis of social processes, such as empathy (Carr et al., 2003; Molnar-
Szakacs et al., 2007), intentionality comprehension and communicative 
exchanges (Iacoboni et al., 2005; Molnar-Szakacs et al., 2007). 

However, despite the potential of this study, some limitations that could 
be implemented in future studies can be highlighted, such as the sample size, 
which could be implemented; and a possible consideration about the 
composition of dyads of different sex, to evaluate any possible differences in 
individuals’ brain responsiveness and intra-brain connectivity. In addition, the 
use of only EEG to investigate cortical activity could be implemented using a 
peripheral activity detection tool, as biofeedback. Finally following studies 
could consider the use of other types of specific gestures, not only affective, 
social and informative ones. 
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