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ABSTRACT 

Collaborative robots (cobots) are a recent introduction in the industrial sector and are 
designed to work on shared tasks with humans with the aim to provide physical and 
cognitive support. This has led to a growing interest in the study of factors affecting 
human-robot collaboration (HRC) with the idea of making cobots more responsive to 
the human psychophysiological state. Several studies have begun to investigate 
dimensions such as mental workload and stress of the individual interacting with a 
cobot using behavioural and neurophysiological metrics, leading to a fruitful 
convergence between the worlds of neuroscience and robotics. It is therefore discussed the 
utility of a multidisciplinary and multidimensional approach in the study of HRC. 
Relevant physiological, neurophysiological, behavioural, and subjective measures are 
presented, as well as the necessity of their integration in HRC research. It is also 
introduced the importance of considering in HRC individual differences in terms of 
cognitive and emotional functioning, and factors related to individual representations 
and interpersonal environment. 
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1. COLLABORATIVE ROBOTICS AND HUMAN-ROBOT INTERACTION  
 
In the last decades industrial production has seen the introduction of new 
technologies including cobots, or collaborative robots. Cobots are specifically 
designed to work alongside with human operators on shared tasks and in a 
shared workspace, and in this they differ from traditional robots which are 
usually kept physically separated from human workers within protective 
barriers (Gervasi et al., 2020). For this reason, cobots are typically equipped 
with additional sensors, sometimes combined with artificial intelligence 
algorithms, that improve their awareness of the surrounding space and enable 
them to adapt power and speed based on the operator's position and other 
obstacles (Faccio et al., 2023). This allows a safe collaboration between human 
and robot with the main advantage of combining the unique abilities of the 
human being, such as flexibility, creativity, and problem-solving abilities, with 
the precision, power, and repeatability of the robot (ISO, 2016). This 
combination could increase productivity and quality of the industrial system 
while at the same time providing physical and cognitive support to the operator 
(Gervasi et al., 2024), for example relieving him from the most repetitive and 
physically demanding actions or suggesting the correct procedure in a task 
difficult to memorize.  

For this reason, literature has recently given increasing attention to the 
study of Human-Robot Interaction (HRI) or Human-Robot Collaboration 
(HRC). HRI is a broad field of study “dedicated to understanding, designing, 
and evaluating robotic systems for use by or with humans” (Goodrich & 
Schultz, 2007). HRI addresses more in general the different ways in which 
humans interact with robots and their application, while HRC is more 
specifically related to the implementation of collaborative robots (Gervasi et al., 
2020). Both are applied to different domains with a large literature, but in this 
context the focus will be narrowed to collaborative robotics in industrial 
settings. Specifically, one of the main challenges in this area is to identify the 
numerous factors that have a relevant impact on the quality of the relationship 
between human and robot during collaborative manufacturing tasks and to 
equip the cobot with the ability to adjust his behavior in response to the 
worker’s psychophysiological state (Carissoli et al., 2023).  

Indeed, in recent years several researches in the field of industrial 
engineering and ergonomics have approached the study of variables related to 
the human mental state that impact the interaction with cobots (Carissoli et al., 
2023; Hopko et al., 2022; Liu et al., 2024). In ergonomics, these variables are 
referred to as “human factors”, and a major focus in the literature is the study 
of how different features of the robot (“robot factors”, such as speed, degree of 
automation, reliability) impact human factors (Hopko et al., 2022). Human 
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factors frequently investigated are mental workload, trust and safety perception, 
anxiety, and fatigue, using a variety of subjective questionnaires, performance 
measures or objective metrics (Faccio et al., 2023; Hopko et al., 2022).  

Mental workload in particular has received increasing attention in the 
scientific literature as an indicator of work-related stress and well-being in 
various contexts, including industrial ones (Carissoli et al., 2023). Mental 
workload is thought to be a multidimensional and multifaceted construct, 
influenced by various factor. A universally accepted definition is still missing 
but it can be summarily described as the demands imposed on the operator by 
the task and the subjective impact on the operator. It reflects the mental fatigue 
resulting from performing the task while taking into account the operator’s 
capacity of facing such demands (Cain, 2007).  

One of the main study objectives within industrial production is to 
measure and monitor the mental workload (or mental stress) of the operators to 
avoid a suboptimal workload. Mental workload impacts decision-making (Liu 
et al., 2024) and both a mental underload and overload have negative effects on 
the operator performance and health (Young et al., 2015).  

Some authors (Carissoli et al., 2023; Cassioli et al., 2021; Rückert et al., 
2023; Villani et al., 2020) therefore suggest designing cobots with the ability to 
detect and process physiological, cerebral, and behavioral signals of the workers’ 
mental state in real time, using non-invasive sensors. This would allow cobots 
to automatically adapt in response to changes in the mental and physical state 
of the operator, that necessarily evolve during the time of the shift, and to 
operators with different individual characteristics, providing optimal workload 
and collaboration patterns.  
 
 
 
2. THE CONTRIBUTION OF NEUROSCIENCE IN MEASURING HUMAN-ROBOT 
COLLABORATION AND MENTAL WORKLOAD  
 
The increasing attention in measuring and modeling human factors such as stress 
and mental workload of workers during the interaction with cobots inevitably 
calls neuroscience into question. As proposed by Cassioli et al. (2021), a holistic, 
multimodal neuroscientific approach to the study of human-robot dynamics 
would prove extremely useful in investigating the complexity of HRC and in 
developing fully collaborative cobots applications. In fact, progresses in 
neuroscientific technology have led to a variety of instruments for the 
measurement of behavioral and neurophysiological parameters that can be used 
in synchrony and are suitable for interactive and dynamic tasks. Neuroscience 
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could therefore supply an important contribute to the study of HRC by 
providing appropriate metrics and a framework in which to interpret them.  
 
2.1 Measuring mental workload 
 
Mental workload or mental stress during collaborative tasks with cobot has 
been measured using a variety of physiological, neurophysiological, subjective, 
and performance measures.  

Specifically, some common peripherical parameters in the study of mental 
workload are Electro Dermal Activity (EDA) or cardiovascular measures such 
as Heart Rate (HR) or Heart Rate Variability (HRV). Several studies (Arai et 
al., 2010; Carissoli et al., 2023; Gervasi et al., 2022, 2024; Lu et al., 2024; 
Pollak et al., 2020; Su et al., 2024; Villani et al., 2020) have investigated 
changes in such parameters within different modalities of human-cobot 
interaction while performing tasks that simulate industrial production 
processes. According to Gervasi et al. (2024) the diffusion and the high 
potential for naturalistic applications in industrial settings of these parameters 
derives from today’s wide availability of noninvasive and relatively affordable 
wearable biosensors, such as wristbands, and from the non-excessive difficulty 
in implementing, analyzing, and interpreting their signals.  

Cardiovascular activity has been extensively investigated in studies that 
assess mental workload in different domains, beside collaborative robotics. It 
proves to be a sensitive measure in discriminating tasks with different mental 
workload levels, with a general increase in HR, an increase in HF/LF ratio (the 
ratio between low frequency band and high frequency band), and a decrease in 
IBI (Interbeat Interval) when mental workload increases (Tao et al., 2019). 
Measurements of electrodermal activity are less diffuse and more controversial 
(Longo et al., 2022) but some studies show positive correlations between skin 
conductance and mental workload (Foy & Chapman, 2018; Mehler et al., 2009).  

A few studies with collaborative robots have also measured central 
neurophysiological parameters of brain activity. For example, a recent study 
(Zakeri et al., 2023) used EEG (electroencephalography) and fNIRS 
(functional near-infrared spectroscopy), combined with subjective and 
behavioral measures, to investigate changes related to task complexity, cobot 
speed and cobot payload capacity. Differences has been found in theta, alpha 
and initial beta bands and in levels of oxygenation in left prefrontal cortex. 
Another study (Memar & Esfahani, 2020) used EEG to identify 
neurophysiological characteristics that can predict perceived workload in 
operators in a predominantly sensory-motor task with cobot. In the broader 
mental workload literature, it has been suggested that beta and theta waves 
increase and alpha waves decrease when mental workload is higher, while 
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increased theta and delta bands reflect transition into mental fatigue (Borghini 
et al., 2014; Kutafina et al., 2021; Tao et al., 2019).  

In addition, EEG and fNIRS signal can be used to gain insight into 
emotion recognition trough the analysis of frontal asymmetry, with an 
increased right frontal activity for negative and aversive emotions and an 
increased left activity for positive emotions (Balconi et al., 2014; Balconi & 
Mazza, 2010) and to investigate attentional processes, in particular selective 
attention, trough ERP approach (Cassioli et al., 2021).  

Other frequent measurements used to assess mental workload and attention 
during HRC are behavioral measurements. They can be collected through 
performance measurements such as number of errors, reaction time, accuracy; or 
using ocular metrics with eye-tracking devices, where eye movements, blink 
activity, pupil diameter and fixation duration can be collected as indicators of 
mental workload, fatigue,  drowsiness and attention (Borghini et al., 2014; 
Cassioli et al., 2021; Foy & Chapman, 2018; Tao et al., 2019).  

Finally, self-report measurements are often used to assess mental 
workload. One of the most frequently used tools is the NASA Task Load Index 
(NASA-TLX; Hart & Staveland, 1988), which assesses associations between 
perceived mental workload and six factors: mental, physical, and temporal 
demands, performance level, effort, and frustration. Other scales have been 
used to assess factors associated with mental workload, including among others 
the Perceived Stress Scale (PSS; Cohen et al., 1983), the State-Trait Anxiety 
Inventory (STAI; Spielberger et al., 1983), the Self-Assessment Manikin (SAM; 
Bradley & Lang, 1994) for emotions valence and arousal evaluation, or the 
Negative Attitude toward Robots Scale (NARS; Nomura et al., 2004).  
 
2.2 A multidimensional and multidisciplinary approach to human-robot 
collaboration  
 
According to some authors one limitation in the current mental workload 
literature is the tendency to use the above-mentioned categories of 
measurements (physiological, neurophysiological, behavioral and subjective) in 
isolation or in pairs but rarely all together (Longo et al., 2022). Instead, a 
comprehensive and multidimensional approach would be advisable since every 
category taken alone has its limitations and does not provide complete 
information (Carissoli et al., 2023; Cassioli et al., 2021; Longo et al., 2022).  

Self-reports are the only ones that can offer an insight of what is 
happening in the mind of the person from his point of view, but they are 
usually completed after task execution and are subjected to bias or errors in 
recalling the experience.  
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Performance measures could be inadequate in capturing cognitive workload 
or fatigue of the workers because some kinds of tasks could induce very few 
changes in the behavioral responses of the worker (Longo et al., 2022), especially 
considering that in industrial manufacturing operators are experienced and can 
perform repetitive tasks with very limited decision making involved.  

Physiological and neurophysiological signals are more reliable but they can 
be influenced by many internal or external factors (Longo et al., 2022). 
Cardiovascular activity for example is highly influenced by physical effort, 
while workload classification based on EEG activity is effective but is generally 
task-specific and therefore difficult to generalize (Ke et al., 2014). This is 
because different tasks activate different cognitive functions and different 
neural activity patterns (Memar & Esfahani, 2020). Even a slightly different 
task can lead to the implementation of different strategies and to a different 
weight of the various functions involved. Investigating neurophysiological 
activity of the brain without considering the cognitive functions involved in that 
specific task and the general cognitive functioning of the individual performing 
the activity is not completely informative. Research on mental workload would 
therefore benefit from the investigation and assessment of neuropsychological 
functions involved in task completion, such as selective attention, working 
memory, stimuli inhibition, cognitive flexibility (Cassioli et al., 2021). 

Besides, HRC is a complex interplay involving robot and humans 
functioning and their interaction, therefore its study should integrate the 
perspective of experts in robotics and industrial engineering with experts of the 
human psychological functioning (Carissoli et al., 2023). An interdisciplinary 
and comprehensive approach to the study of HRC should consider a variety of 
factors that have an impact on the person mental and psychophysiological state. 
These are not limited to the impact of robot features on the individual (Hopko 
et al., 2022) or to the effects of task complexity on mental workload, but 
comprehend emotional, cognitive, representational, interactional, and 
environmental aspects. How people experience a given situation in fact varies 
from person to person and within the same person in different times and 
circumstances. In cognitive psychology theories of appraisal (Lazarus & 
Folkman, 1984) emphasize that the evaluation of the situation is essential in 
determining the nature of the emotional reaction and experience. A specific 
event is defined as stressful not only because of the effect of the external 
stimulus on the person but depending on how the person perceives and 
evaluates the external stressor. This cognitive appraisal comprehends different 
levels from the interpretation and relevance of the stimulus, the evaluation of 
one’s abilities and resources to cope with the situation, the immediate and 
long-term consequences to the individual’s goals and values (Lazarus & 
Folkman, 1984; Scherer, 2001).  
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It is therefore important to consider the individual differences, both in 
terms of trait and state, that impact the perception of the situation on a 
representational, cognitive, and affective level. Some examples could be 
familiarity with robots, trust and acceptance of technology, executive functions, 
coping strategies, physiological vulnerability, individual characteristics such as 
cognitive flexibility and openness to experiences, the mood and mental state of 
the operator in that specific moment, and others. Some of these have been 
already considered in cobot literature, but not extensively.  

Another factor of great importance is the environment in which the person 
operates. In addition to the effects of the physical environment on human 
performance, the social aspects of the environment are also of relevance. One 
limitation of studies that investigate HRC is that they are often conducted in 
laboratory settings (Liu et al., 2024) with usually only one person interacting 
with one robot. In real life industrial settings could be very different from that of 
the laboratory. In the latter, moreover, relationships and interactions with 
coworkers and different roles within the organization are inevitably not 
considered. Besides, working alone with a cobot or within a team of people and 
cobots could be very different. Hyperscanning (Montague et al., 2002) is a recent 
neuroscientific paradigm that is increasingly being used in the study of 
simultaneous and reciprocal interactions between human agents. In fact, it can be 
used to obtain information about neuro and psychophysiological synchronization 
and social adaptation both in dual and group interactions (Balconi & Fronda, 
2020; Balconi & Vanutelli, 2017). Hyperscanning paradigm could therefore 
provide a novel insight into the study of HRC in realistic and complex work 
environments with multiple humans and cobot agents (Cassioli et al., 2021).  
 
 
 
3. CONCLUSIONS 
 
In this work it is discussed the contribution that neuroscience can give to the 
study of human-robot collaboration in industrial contexts. The diffusion of 
cobots in industries has led to the introduction of new models of interaction 
between humans and technology. Within this context the interest in studying 
the effects of such collaboration on the human mental state has increased, with 
a particular focus on mental stress and mental workload assessment during 
collaborative activities (Carissoli et al., 2023; Hopko et al., 2022). Some 
authors suggest that making cobots responsive to the psychophysiological state 
of the operator could improve collaboration patterns and reduce operator’s 
workload (Carissoli et al., 2023; Cassioli et al., 2021; Rückert et al., 2023).  
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It is therefore discussed the utility of a multidimensional and 
multidisciplinary approach to the assessment of human-robot interaction. Such 
an approach should integrate expertise from different disciplines regarding 
robot science and human science, and should consider different cognitive, 
affective, representational, and social variables that have an impact on the 
behaviour and mental state of the individual. It is highlighted the importance 
of combining different methodologies, such as autonomic physiological 
measurements, central brain activity measurements, behavioural/performance 
measurements, and subjective measurements, to achieve a comprehensive and 
fully informative understanding of human-cobot dynamics. Besides, it is 
introduced the importance of considering individual differences in terms of 
cognitive functioning, mental representation of cobots and technology, coping 
strategies, personality traits and emotional states.  

 Limitations and future challenges in the study of this complex topic are 
also mentioned, particularly with respect to the ecological validity of the studies 
and the possibility of investigating dynamics related to the environment and 
the social interaction with multiple agents trough hyperscanning paradigm.  
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