Gaetano Domenici
Editoriale / Editorial
«Comportamento insegnante» e sviluppo del pensiero scientifico
(The Attitude that it Teaches and the Development of Scientific Thought)

Studi e Contributi di Ricerca
Studies and Research Contributions

Paola Ricchiardi - Federica Emanuel
Soft Skill Assessment in Higher Education
(Valutare le soft skill in Università)

Gamal Cerda Etchepare - Carlos Pérez Wilson
Karina Pabón Ponce - Verónica León Ron
Análisis de los esquemas de razonamiento formal en estudiantes de Educación Secundaria Chilenos mediante la validación del Test of Logical Thinking (TOLT)
(Formal Reasoning Schemes Analysis in Chilean Secondary Education Students through the Validation of the Test of Logical Thinking - TOLT)
(Analisi degli schemi di ragionamento formale degli studenti della Scuola Secondaria cilena attraverso la validazione del Test del Pensiero Logico - TOLT)
Laura Occhini
Orientamento universitario in entrata: misurare l’efficacia
(University Incoming Orientation: Measure Forcefullness)

Giulia Bartolini - Giorgio Bolondi - Alice Lemmo
Valutare l’apprendimento strategico: uno studio empirico
per l’elaborazione di uno strumento
(Evaluating Strategic Learning: An Empirical Study for the Elaboration of an Instrument)

Kenneth T. Wang - Tatiana M. Permyakova
Marina S. Sheveleva - Emily E. Camp
Perfezionismo as a Predictor of Anxiety in Foreign Language Classrooms among Russian College Students
(Il perfezionismo come predittore di ansia nei corsi di lingua straniera per studenti universitari russi)

Li-Ming Chen - Li-Chun Wang - Yu-Hsien Sung
Teachers’ Recognition of School Bullying According to Background Variables and Type of Bullying
(Riconoscimento da parte degli insegnanti del bullismo scolastico in relazione a variabili di sfondo e tipo di bullismo)

Laura Girelli - Fabio Alivermini - Sergio Salvatore
Mauro Cozzolino - Maurizio Sibilio - Fabio Lucidi
Affrontare i primi esami: motivazione, supporto all’autonomia e percezione di controllo predicono il rendimento degli studenti universitari del primo anno
(Coping with the First Exams: Motivation, Autonomy Support and Perceived Control Predict the Performance of First-year University Students)

Nicoletta Balzaretti - Ira Vannini
Promuovere la qualità della didattica universitaria. La Formative Educational Evaluation in uno studio pilota dell’Ateneo bolognese
(Promoting Quality Teaching in Higher Education. A Formative Educational Evaluation Approach in a Pilot Study at Bologna University)

Emanuela Botta
Costruzione di una banca di item per la stima dell’abilità in matematica con prove adattative multilivello
(Development of an Item Bank for Mathematics Skill Estimation with Multistage Adaptive Tests)
Sommario

Rosa Cera - Carlo Cristini - Alessandro Antonietti
Conceptions of Learning, Well-being, and Creativity in Older Adults
(Concezioni dell’apprendimento, benessere e creatività negli anziani)

Marta Pellegrini - Giuliano Vivanel - Roberto Trinchero
Gli indici di effect size nella ricerca educativa. Analisi comparativa e significatività pratica
(Indexes of Effect Sizes in Educational Research. Comparative Analysis and Practical Significance)

Antonio Calvani - Roberto Trinchero - Giuliano Vivanel

Giusi Castellana
Validazione e standardizzazione del questionario «Dimmi come leggi». Il questionario per misurare le strategie di lettura nella scuola secondaria di primo grado
(Validation and Standardization of the Questionnaire «Tell Me How You Read»: The Questionnaire on Reading Strategies in the Lower Secondary School)

Laura Menichetti
Valutare la capacità di riassumere. Il Summarizing Test, uno strumento per la scuola primaria
(Evaluating Summarizing Skills. The Summarizing Test, a Tool for Primary School)

Note di Ricerca

Elsa M. Bruni
La valutazione vista da lontano: lo sguardo della pedagogia generale (II)
(Evaluation Viewed from a Distance: The Vision of General Pedagogy - II)

Giorgio Bolondi - Federica Ferretti - Chiara Giberti
Didactic Contract as a Key to Interpreting Gender Differences in Maths
(Il contratto didattico come una chiave di lettura per interpretare le differenze di genere in matematica)
Elisa Cavicchiolo - Fabio Alivernini
The Effect of Classroom Composition and Size on Learning Outcomes for Italian and Immigrant Students in High School
(L’impatto della composizione e della dimensione della classe sugli apprendimenti degli studenti italiani e immigrati nella scuola secondaria di secondo grado)

Marta Pellegrini - Lucia Donata Nepi - Andrea Peru
Effects of Logical Verbal Training on Abstract Reasoning: Evidence from a Pilot Study
(Effetti di un training logico verbale sulle capacità di ragionamento astratto: risultanze da uno studio pilota)

Massimiliano Smeriglio
Porta Futuro Lazio: l’innovazione possibile nel servizio pubblico per lo sviluppo dell’occupabilità in ottica lifelong learning
(Porta Futuro Lazio: A Possible Public Service Innovation for Employability’s Development in a Lifelong Learning View)

Giorgio Asquini
Osservare la didattica in aula. Un’esperienza nella scuola secondaria di I grado
(Classroom Observation. A Study in Lower Secondary School)

Commenti, Riflessioni, Presentazioni, Resoconti, Dibattiti, Interviste
Comments, Reflections, Presentations, Reports, Debates, Interviews

Antonio Calvani
Per un nuovo dibattito in campo educativo
(For a New Debate in the Educational Field)

Journal of Educational, Cultural and Psychological Studies
Notiziario / News

Author Guidelines

Abstract

Here some theses introduced in the S.Ap.I.E. (Società per l’Apprendimento e l’Istruzione informati da Evidenza) Manifesto are developed. Firstly, we summarize the relevant advances in educational research characterizing the new millennium, related to Evidence-Based Education and its convergence with other fields. These gave rise to a new scientifically-based perspective in education and to a new domain that we named Instructional and Learning Science. Then, we examine some developments now possible concerning fundamental principles of instruction and recommendations to which teachers should refer; the critical revision of some widespread beliefs not based in evidence at all; and the possibility of defining rational frameworks, informed by evidence, to sup-
port educational decisions. Finally, we introduce some challenges for the new generation of educational scientists, in the hope that the current stalemate in Italian educational research can be overcome. These concern mainly: (i) the graduate programs in education in which methods of educational research, within a critical culture on knowledge reliability, should be at the basis; and (ii) new forms of collaboration between universities and schools which, leaving current models of limited impact, should be oriented towards clearly defined objectives and effective programs.

Keywords: Efficacy; Evidence-based education; Instruction; Reliability; Research methods.

1. **PARTE PRIMA – DEFINIRE IL NUOVO DOMINIO SCIENTIFICO SULL’ISTRUZIONE**

Ciò che è strettamente necessario [...] è lo sviluppo di strategie di ricerca analoghe a quelle che hanno consentito di fare rapidi passi in avanti in campi come la medicina, la fisica [...] C’è bisogno di una mappa chiara dello stato dell’arte del settore. Una simile mappa dovrebbe indicare le piste più promettenti per il futuro della ricerca come anche le alternative inadeguate o scorrette. (Bloom, 1966, p. 219)

Qualunque ricerca che, alla fine, non permetta di compiere una certa generalizzazione dei dati ricavati e, pertanto, non abbia valore predittivo non può essere qualificata come scientifica. Paragonare l’efficacia di due metodi d’insegnamento ha valore pratico se la conclusione raggiunta consente di prevedere quale sia la più efficace, in eguali condizioni interne ed esterne. [...] La storia della scienza dimostra che il progresso dipende dalla qualità delle previsioni che l’uomo stabilisce e che il loro valore dipende, a sua volta, dalla conoscenza profonda che abbiamo dei fenomeni presi in considerazione. (de Landsheere, 1970, pp. 41-42)

In carenza di un serio esame scientifico delle questioni, ci si affida semplimente a dei movimenti d’opinione. La nostra legislazione scolastica è purtroppo soggetta ai movimenti d’opinione, anche contingenti, in maniera incredibile [...] queste questioni sono affidate in misura sproporzionata a movimenti d’opinione, giustificatissimi, ma che sarebbe giusto che fossero corretti in qualche misura dai dati di ricerche serie. (Visalberghi, 1975, p. 29)

L’accumulazione di incongruenze e problemi nel sistema scolastico italiano non è quindi sorprendente. Senza uno sforzo adeguato di ricerca scientifica sulla scuola non si combattono i cattivi risultati degli studenti, non si riduce
il disagio di molti insegnanti e dirigenti in un sistema che affonda lentamente nell’indifferenza, né si attenuano le ingiustizie e i macroscopici squilibri esistenti sul territorio nazionale. Tranne alcune eccezioni, l’offuscamento della realtà pare prassi corrente nel dibattito scolastico italiano. Questa operazione è resa possibile dalla mancanza di prove e di dati verificati, frutto di indagini rigorosamente condotte. (Bottani, 2009, p. 20)

1.1. Le premesse al Manifesto

Numerosi sono stati i ricercatori che, da Dewey (1929) in poi, si sono interrogati sulla natura scientifica della ricerca educativa e hanno cercato di dimostrare come in essa siano possibili avanzamenti di conoscenza attraverso l’impiego sistematico di metodi di osservazione e sperimentazione. Da sempre costoro hanno seguito un approccio rigorosamente scientifico per acquisire conoscenza capace di orientare le scelte pratiche dei decisori ma, tra l’auspicio teorico e l’attuazione, si è frapposta una sostanziale difficoltà: le variabili che caratterizzano ogni condizione educativa sono numerose e bastano alcuni elementi di diversità per produrre differenze anche rilevanti nei risultati.

Poche ricerche sperimentali, anche se ben condotte, non consentono di offrire un quadro ragionevolmente esaustivo relativo, ad esempio, all’efficacia di un determinato metodo didattico, tenuto conto delle differenze contestuali di applicazione. E in questa debolezza cruciale, come noto, si sono inserite da tempo le argomentazioni dei detrattori dell’approccio scientifico all’educazione, i quali, estremizzando l’aspetto dell’unicità della situazione educativa, si sono fatti sostenitori di piste fenomenologiche e interpretazioniste che di fatto tagliano ogni possibilità di costruire scienza nell’accezione normale che possiamo dare a questo termine.

1 Il Manifesto intende sottoporre all’attenzione di ricercatori, decisori e insegnanti i cambiamenti in atto nella ricerca educativa e la loro rilevanza rispetto alle decisioni politico-istituzionali e didattiche per la scuola. Esso mette al centro la scuola non perché questo sia l’unico ambito di interesse, ma in quanto è quello in cui si rende oggi più visibile un impegno crescente volto alla comparazione sistematica e alla capitalizzazione delle conoscenze.

2 Anche nel contesto italiano si è cominciato a parlare da decenni di «Scienze dell’Educazione», sulla scia in particolare di Visalberghi (1978), e il termine si è comunemente diffuso, entrando come titolazione accademica nei Dipartimenti e nei Corsi di Laurea, anche se non si è andati oltre un suo impiego formale, senza che ciò implicasse un’analisi sostanziale della natura realmente scientifica o meno di questo dominio.

3 Non c’è dubbio che qualunque accadimento, del mondo fisico come del mondo sociale, sia in qualche misura unico, nel senso radicale e persino inquietante che esso si dà, letteralmente, una sola volta. Ma «è precisamente per questa ragione che l’argomento
Oggi ci troviamo dinanzi ad un cambiamento rilevante, di cui chiunque sia interessato alla ricerca educativa (e in particolare i futuri ricercatori) dovrebbe essere consapevole: nel mondo dell’educazione ha preso risalto un ambito che soddisfa in modo più rigoroso i criteri che richiede una scienza in senso stretto, per il quale gli estensori del Manifesto hanno proposto la dizione *Scienza dell’istruzione e dell’apprendimento* (Instruction and Learning Science)⁴.

La tesi che il Manifesto sostiene è che non siamo dinanzi, come si potrebbe pensare, a una nuova fase della periodica oscillazione tra orientamenti culturali di segno opposto (idiografico, fenomenologico, qualitativo *vs* nomotetico, sperimentale, quantitativo), con una nuova accentuazione in senso neopositivistico (Calvani, 2013). Siamo invece dinanzi a un cambiamento sostanziale, a uno scatto in avanti della ricerca educativa che apre una strada senza ritorno: l’ambito dell’istruzione fa propri i dispositivi tipici dei domini scientifici che consentono di produrre, falsificare, comparare, capitalizzare conoscenza, e orientare la ricerca su punti controversi o bisognosi di ulteriori indagini (cfr. Popper, 1959).

Il fattore fondamentale che sta alla base di questa svolta radicale va ricercato nella diffusione dell’orientamento che va sotto il nome di Evidence-Based Education (EBE, in it. *Educazione basata su evidenze* o *educazione informata da evidenze*; Davies, 1999; Whitehurst, 2002; Vivanet, 2014)⁵, con una metodologia che consente il passaggio di scala dal livello tradizionale basato su singole indagini ad un livello più alto basato sui meta-data derivanti da sintesi di ricerca (revisioni sistematiche, meta-analisi, *best evidence synthesis*) (Pellegrini & Vivanet, 2018). Questa nuova disponibilità, che si genera attraverso la comparazione sistemistica dei risultati di ricerca su larga scala, agevolata dall’accesso rapido alle conoscenze scientifiche consentito dallo sviluppo di Internet, diventa il presupposto di un sostanziale cambiamento di qualità metodologica: il fatto di poter disporre di un quadro complessivo dei risultati di un vasto numero di esperimenti relativi alla stessa ipotesi di efficacia di un determinato intervento didattico può

⁴ Alcuni colleghi si sono dichiarati più favorevoli alla definizione *Scienza dell’insegnamento e dell’apprendimento*, espressione che tuttavia limita l’ambito di indagine all’intervento diretto dell’insegnante nella classe, mentre il dominio che si profila coinvolge anche altri livelli relativi al miglioramento degli apprendimenti (scuola, sistema scolastico, vd. dopo).

⁵ Per una panoramica della letteratura italiana sull’EBE, si veda http://www.sapie.it/index.php/it/pubblicazioni/libri-e-articoli.
consentire infatti una capitalizzazione delle conoscenze sino ad arrivare al «punto di saturazione» ⁶; allo stesso tempo, l’analisi della variabilità dei risultati conseguiti nei singoli esperimenti in rapporto alla tendenza media, può far luce sui fattori circostanziali che, in positivo o in negativo, fanno la differenza ⁷.

Per comprendere l’importanza di questo ampliamento di prospettiva conviene considerare il lavoro condotto da Hattie (2009), l’autore che ha avuto il merito di portare alla luce le potenzialità dell’EBE attraverso una gigantesca operazione di sintesi di oltre 800 meta-analisi, interessando un corpus di diverse decine di migliaia di ricerche che praticamente riguardano quasi tutte le azioni o strategie didattiche, di cui si viene a valutare l’efficacia con parametri quantitativi. Va anche detto che, ad un’analisi più attenta, i dati di Hattie non sono esenti da criticità metodologiche (cfr. Slavin, 2018), ma senza entrare qui nel dettaglio di queste, e riconoscendo, come doveroso, che la produzione di sintesi di conoscenza è tutt’altro che esente da difficoltà e fraintendimenti (Pellegrini & Vivanet, 2018), quello che interessa sottolineare è che la strada è ormai aperta: quanto Hattie ha fatto da solo potrà essere ripetuto da altri ricercatori, con valutazioni che potranno diventare via via più accurate attraverso opportune triangolazioni e apporti di nuovi dati ⁸.

Va anche aggiunto che se l’avvento dell’EBE rappresenta il fattore innovativo cruciale ci sono altri elementi che accrescono la fiducia sul futuro di questo nuovo dominio. La rilevanza di quanto viene dall’EBE si accresce in rapporto alle interconnessioni che si vengono a creare con gli apporti provenienti da altri domini, in particolare da quelli che possono fornire quadri teorici e culturali più organici ⁹. Il Manifesto ha sottolineato l’importanza di un asse privilegiato con il settore che va sotto il nome di Instructional Design, a cui vanno aggiunte le scienze cognitive (in particolare a questo riguardo appaiono di massima rilevanza i contributi della

⁶ Il punto di saturazione si ottiene quando, ripetendo più volte lo stesso esperimento, si si rende conto che un incremento di ulteriori interventi non modificherebbe più sensibilmente il valore complessivo già acquisito.

⁷ Per una panoramica dei numerosi centri internazionali che operano a tal fine, si rimanda a Bruni & Vivanet, 2013.

⁸ Va anche detto che molto lavoro rimane da fare nella comunità scientifica in particolare sul piano dell’ambiguità linguistica, per una più chiara definizione di strategie e modelli d’istruzione.

⁹ Diverse sono ormai le scienze in grado di presentare suggerimenti sul modo di favorire l’apprendimento e sarebbe sciocco ignorarne aprioristicamente qualcuna. «Il meglio che possiamo fare è attingere dalla varietà delle prospettive, prestando una particolare attenzione a quando gli indici puntano nella stessa direzione» (Gardner, 2016, pp. 5-6).
Cognitive Load Theory – CLT\(^\text{10}\), le neuroscienze cognitive, e la pedagogia comparata (ad esempio, con le indagini OCSE-PISA), aspetti, questi ultimi, sui quali non possiamo tornare qui oltre quanto già dichiarato nel Manifesto e su cui del resto saranno necessari ulteriori approfondimenti.

1.2. *Per una Scienza dell’istruzione e dell’apprendimento*

La visione che autori come Dewey, Claparède, de Landsheere, Bloom, Slavin, e in Italia Visalberghi, avevano preconizzato, di un’educazione come scienza, capace di fornire suggerimenti affidabili ai decisori che operano nell’ambito dell’istruzione, si sta realizzando. Il dominio in questione può essere ormai riconosciuto come una scienza, assumendo come riferimento la seguente definizione di scienza. Una scienza è un dominio nel quale:

- ogni asserzione è l’esito di un processo esplicito e riproducibile (trasparenza e falsificabilità del processo e del prodotto di conoscenza);
- ogni asserzione è sottoposta al vaglio della documentazione empirica e/o sperimentale e sulla base di questa può essere accolta o rigettata;
- la conoscenza, così corroborata, deve essere utile per la formulazione di descrizioni, spiegazioni, previsioni;
- ogni asserzione, a seconda del supporto empirico e/o sperimentale che la corroborata, può avere diversi livelli di affidabilità;
- le conoscenze sono capitalizzabili, è dunque così possibile definire uno stato dell’arte via via revisionabile.

Per questa via, i risultati delle ricerche empiriche in ambito didattico diventano cumulabili e consentono di uscire dal desolante scenario di una ricerca costretta a ripartire sempre da zero (Margiotta, 2015; Zanniello, 2018\(^\text{11}\)). Questo dominio dovrebbe avere come obiettivo specifico lo studio

\(^{10}\) Una rilevante teoria che tutti gli insegnanti dovrebbero conoscere è la Cognitive Load Theory (CLT, in it. *Teoria del carico cognitivo*) che ha mostrato come spesso l’insegnamento non funzioni perché non tiene conto del «collo di bottiglia» rappresentato dai limiti della memoria di lavoro e dal fatto che l’allievo non viene messo nelle condizioni di stabilire le giuste connessioni tra le preconoscenze possedute e le nuove conoscenze da acquisire e (cfr. Landriscina, 2007).

\(^{11}\) Così si esprime Zanniello (2018): «Per rendere cumulabili i dati nel report finale di una ricerca si dovrebbe poter affermare: questa attività formativa, descritta con dovizia di particolari, funziona con soggetti con queste caratteristiche e che vivono in ambienti di questo genere; essa darà buoni risultati se i formatori posseggono almeno questo tipo di competenze e se possono usare almeno questi strumenti». Anche in caso di risultati negativi questi dovrebbero essere dichiarati dal ricercatore, aspetto che raramente accade, con un evidente danno per l’avanzamento della ricerca che non è così messa in condizione di non ricalcare sentieri già risultati infruttuosi (*ibidem*; Domenici, 2013).
del rapporto tra le azioni istruttive (strategie, programmi, dispositivi, sistemi d’istruzione) e l’impatto sull’apprendimento, individuando tra esse quelle che, in determinati contesti, ottengono il conseguimento di obiettivi didattici nel modo più efficace, efficiente e coinvolgente (Reigeluth, 1999), rispondendo alla questione tipica posta nell’approccio evidence-based: «che cosa funziona, a quali condizioni» (what works, under what circumstances). L’impatto si misura con disegni sperimentali (tipo randomized controlled trial) o quasi-sperimentali o correlazionali, avvalendosi inoltre, se pur in subordine, di documentazione qualitativa.

Il fine è fornire ai decisori in educazione informazioni su ciò che, al momento, sappiamo funzionare meglio, attingendo dalla migliore ricerca scientifica disponibile, dai dati comparativi internazionali, o dalla stessa storia della didattica, in modo da evitare subalternità a mode o a false credenze, e rendere più «informata» la decisione, la cui responsabilità rimane comunque interamente nelle mani del decisore.

Le conoscenze così prodotte possono essere di supporto per le decisioni a differenti livelli:

- **micro**: livello delle scelte didattiche in classe;
- **meso**: livello delle scelte sui programmi e curricoli scolastici delle singole scuole;
- **macro**: livello delle scelte sul sistema scolastico (politica scolastica, scelte relative al sistema-istruzione nel suo complesso).

Importante è anche pensare alle conoscenze acquisite sulla base di livelli di evidenza. L’evidenza infatti non ha una natura dicotomica, ma probabilistica e dunque differenziabile in livelli o gradi di affidabilità, esigenza del resto oggi avvertita nelle politiche internazionali.

12 L’apprendimento non è da intendersi riduttivamente in senso puramente conoscitivo/cognitivo. Esso si può identificare con un cambiamento sul piano cognitivo, affettivo e motivazionale, relazionale, dell’autoefficacia e dell’empowerment.

14 Si consideri ad esempio la modifica che nelle politiche statunitensi si è avuta nel passaggio dal No Child Left Behind Act (NCLB) del 2001, dove si parlava di «ricerche...
2. **Parte seconda – Nuovi sviluppi: principi fondamentali dell’istruzione, critica alle credenze infondate e argomentazioni razionali informate da evidenze**

Al di là di una dichiarazione puramente teorica, la rilevanza di un avanzamento all’interno di un dominio di conoscenza si apprezza sulla base degli sviluppi e dei vantaggi che si rendono possibili. Cosa consente dunque questa significativa trasformazione in senso scientifico dell’istruzione a cui abbiamo fatto riferimento? Facciamo alcuni esempi.

2.1. **Individuare le architetture dell’istruzione che ottimizzano l’efficacia**

Si può parlare di «principi generali dell’istruzione», come li chiama Merrill (2002)? È possibile individuare raccomandazioni fondamentali per gli insegnanti? Nella tradizione pedagogica prevale una risposta tipicamente rinunciatoria, sulla base di argomentazioni legate al fatto che le situazioni educative sono sempre complesse e troppo «uniche», e che un metodo può funzionare in un contesto e non in un altro. Questa concezione ignora però il fatto che esistono anche gradi di rassomiglianza tra le azioni e i contesti didattici, aspetto che del resto è parte dell’esperienza quotidiana dell’insegnante stesso che si rende conto di diventare più esperto imparando proprio dal confronto con le proprie esperienze precedenti.

Diversi autori (citati in Tab. 1) hanno dato una risposta positiva ai quesiti sopra avanzati, sostenendo che la sfida per una corretta definizione delle raccomandazioni fondamentali per il bravo insegnante non può essere elusa. Se ci chiediamo quale metodologia possa consentire di affrontare un dato problema didattico, il principio rimane quello già indicato: trovare il maggior consenso possibile tra i diversi modelli elaborati dalle diverse prospettive e sottoporli ai riscontri dell’evidenza scientifica.

La cosa rilevante che si può oggi osservare è che tra gli autori sopra elencati e i loro modelli teorici, nati anche a distanza di decenni, sussistono chiari elementi di convergenza e questi trovano oggi ulteriori conferme dai dati sperimentali offerti dalle metodologie messe in campo dall’EBE. Ciò scientificamente fondate», all’*Every Student Succeeds Act* (ESSA) del 2015, dove si distingue tra programmi basati su: evidenza forte (almeno uno studio sperimentale ben progettato e ben implementato con risultati statisticamente significativi); evidenza moderata (almeno uno studio quasi sperimentale ben progettato e ben implementato con risultati statisticamente significativi); evidenza promettente (almeno uno studio ben progettato e ben implementato di tipo correlazionale con controllo statistico dei fattori di tendenziosità e con risultati statisticamente significativi) (Pellegrini, 2017).
consente di individuare punti di convergenza traducibili in raccomandazioni spendibili nella pratica (una lista delle indicazioni di maggior rilevanza è riportata in Tab. 115).

Tabella 1. – Quali raccomandazioni fondamentali per l’insegnante?

<table>
<thead>
<tr>
<th>Quali raccomandazioni fondamentali per l’insegnante?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Predefinire una struttura di conoscenza ben organizzata (Bruner, 1964; Rosenshine, 2002; Hattie, 2009).</td>
</tr>
<tr>
<td>2. Rendere chiari gli obiettivi e trasmettere fiducia nel loro conseguimento, realizzando un clima sfidante (Gagné e Briggs, 1990; Rosenshine, 2002; Hattie, 2009).</td>
</tr>
<tr>
<td>3. Attivare preconoscenze (Ausubel, 1963; Gagné & Briggs, 1990; Merrill, 2002; Marzano et al., 2001, ES 0.59; Hattie, 2017, ES 0.9316).</td>
</tr>
<tr>
<td>4. Scomporre e regolare la complessità del compito in funzione dell’expertise dell’allievo (Gagné e Briggs, 1990; Mayer, 2001; CLT; Clark, Nguyen, & Sweller, 2006).</td>
</tr>
<tr>
<td>5. Orientare l’attenzione dell’allievo e diminuire il carico cognitivo estraneo (Gagné & Briggs, 1990; CLT).</td>
</tr>
<tr>
<td>6. Impiegare modellamento guidato (Bandura, 1975; Rosenshine, 2002; Hattie, 2009).</td>
</tr>
<tr>
<td>7. Favorire una transizione progressiva dalle dimostrazioni alla pratica attiva (CLT).</td>
</tr>
<tr>
<td>9. Utilizzare feed-back e valorizzare l’autoefficacia (Bandura, 1996; Gagné & Briggs, 1990; Marzano et al., 2001, ES 0.61; Hattie, 2017, feed-back ES 0.70, self-efficacy ES 0.92).</td>
</tr>
<tr>
<td>10. Favorire riapplicazioni in contesti variati e a distanza di tempo (Bruner, 1964; Gagné & Briggs, 1990; Spiro et al. 1995; CLT; Merrill, 2002).</td>
</tr>
<tr>
<td>11. Potenziare la conservazione in memoria delle idee e procedimenti rilevanti (Gagné & Briggs, 1990; Bruner, 196417; Hattie, 2017, ES 0.60).</td>
</tr>
</tbody>
</table>

15 La lista, che va comunque considerata come un set di ipotesi orientative, è lievemente adattata da Calvani (2012) a cui si rimanda per approfondimenti. Essa si basa, a sua volta, sul lavoro condotto da Clark, Lyons e Hoover (2004) che hanno aggiornato il modello di Gagné. Le voci e accentuazioni si diversificano da autore ad autore senza che tuttavia muti sensibilmente il quadro d’insieme.

16 Si riporta l’indicazione dell’indice di Effect Size (ES), una misura statistica usata per valutare l’efficacia di un intervento didattico (Pellegrini & Vivanel, 2018). Hattie (2009) considera particolarmente significativi i metodi che registrano un ES maggiore di 0.40.

17 Come osservava già Bruner «Forse la cosa più importante che dopo un secolo di studi approfonditi si possa dire sulla memoria umana è che una nozione viene rapidamente dimenticata se non viene inserita in un contesto strutturale. Un dettaglio si conserva nella memoria grazie all’uso di una sua rappresentazione semplificata. Queste rappresentazioni semplificate fanno ciò che si suol definire un carattere ‘rigenerativo’» (Bruner, 1964, p. 48).
Nel loro complesso, le raccomandazioni si possono collocare in una zona di convergenza tra la tradizione dell’Istruzione diretta (Rosenshine, 2009) e quella dell’apprendistato cognitivo (Collins, Brown, & Newman, 1995) con le sue componenti di modeling (dimostrare come si agisce), scaffolding (fornire elementi di supporto), fading (ridurre progressivamente la guida istruttriva), a cui si aggiungono le tecniche di sviluppo della dimensione metacognitiva, componenti che sono confermate dai lavori di Hattie (2017).

A nostro avviso, nelle formulazioni indicate nella scheda si possono individuare le raccomandazioni principali che si dovrebbero suggerire agli insegnanti, i punti centrali su cui dovrebbe convogliare la loro attenzione nell’intento di sviluppare al meglio l’apprendimento in ogni tipo di soggetto.20

2.2. Segnalare credenze infondate

Quanto abbiamo messo in risalto nel paragrafo precedente, nella ricerca delle indicazioni di massima efficacia, implicitamente fa emergere il corrispettivo sotto forme di credenze ingenue. Nella scuola e nella cultura didattica che la compenetra esistono varie misconcezioni. Sono anche presenti termini che nell’uso didattico corrente hanno assunto connotazioni semantiche che inducono atteggiamenti impropri. Termini come istruzione, lezione, dimostrazione, modellamento, sono spesso percepiti come avvolti da

18 Per Istruzione diretta o esplicita si intende un un modello d’istruzione i cui elementi fondamentali possono essere individuati nell’organizzazione chiara dei contenuti da apprendere, nell’insegnamento a piccoli passi, nell’alternanza stretta tra dimostrazioni, pratica e feed-back, nella revisione attiva da parte dell’allievo, nei collegamenti continui con le acquisizioni precedenti (Rosenshine, 2009).

19 Dal lavoro di Hattie (2017) risulta come alcune componenti didattiche, trasversali a più strategie o modelli, ottengano eccezionale efficacia: tra esse, strategie metacognitive (ES 0.60); il feed-back (ES 0.70); la chiarezza dell’insegnante (ES 0.75); le strategie per integrare le conoscenze pregresse (ES 0.73) (cfr. Hattie, 2017). Volendo estrapolare l’ipotesi di un’architettura ancora più essenziale, a nostro avviso essa potrebbe essere ricercata nell’integrazione dinamica tra tre fattori fondamentali: il modellamento meta-cognitivo; il feed-back; e il lavoro cooperativo (preferibilmente in coppia). Questo modello semplificato è stato adottato come riferimento dei programmi di miglioramento per le scuole dell’Associazione S.Ap.I.E., in particolare per il potenziamento cognitivo e lo sviluppo della comprensione del testo. Si veda http://www.sapie.it/index.php/it/per-le-scuole.

20 I principi dell’istruzione valgono per tutti i soggetti, normodotati o non. Ciò che cambia nel caso di disabili cognitivi è la regolazione applicativa di quei principi (ad esempio il grado di scomposizione in passi analitici, la quantità di feed-back, il tempo consentito alla risposta). Con l’eccezione dei disturbi sensomotori che richiedono canali o ausili speciali, non ha dunque senso partare di «didattiche speciali» (Calvani, 2012; Mitchell, 2014).
una semantica negativa. Anche per essere stati essi stessi – nel loro percorso di formazione – soggetti di pratiche spontaneistiche, non fondate su una conoscenza approfondita di tali strategie, gli insegnanti tendono a identificare questi termini con forme di banale addestramento.

La lezione «frontale», identificata con il modello «insegnante che spiega e interroga», induce una reazione emotiva di opposizione; eliminare la lezione «frontale» è per molti l’obiettivo primario dell’innovazione scolastica. Ci si aspetta ingenuamente che dall’introduzione di una «didattica aperta» venga la soluzione di tutti i problemi. Molte di queste credenze sono riportabili alla cornice del costruttivismo che dagli anni ’90 ai primi anni del nuovo millennio ha pervaso la scuola italiana, riproponendo spesso atteggiamenti ingenui, non dissimili da quanto accaduto in passato con l’attivismo. Di seguito (Tab. 2) si introducono sinteticamente alcune credenze tipiche, non supportate, anzi disconfermate, dall’evidenza.

Tabella 2. – Elenco di credenze infondate.

<table>
<thead>
<tr>
<th>Credenze infondate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Più si è esposti a stimoli più si impara.</td>
</tr>
<tr>
<td>2. Solo un apprendimento basato sull’esperienza pratica consente di fare apprendimento attivo e significativo.</td>
</tr>
<tr>
<td>3. I ragazzi imparano meglio se li si lascia sperimentare e costruire i concetti da soli.</td>
</tr>
<tr>
<td>4. Il miglior metodo didattico è quello per problemi e per scoperta.</td>
</tr>
<tr>
<td>5. I ragazzi imparano meglio quando fanno lavori di gruppo.</td>
</tr>
<tr>
<td>6. Se hai capito il concetto una volta, poi lo saprai applicare sempre.</td>
</tr>
<tr>
<td>7. Se l’alunno non è interessato a un argomento bisogna prima motivarlo con attività preliminari.</td>
</tr>
<tr>
<td>8. Una buona didattica deve partire dagli stili di apprendimento degli allievi.</td>
</tr>
</tbody>
</table>

21 L’attivismo ingenuo era già stato criticato nel secondo dopoguerra da Bruner (1964) e, in Italia, dalla pedagogia marxista e laica. Il costruttivismo sociale (conoscenza come costruzione di significato, apprendimento situato e collaborativo) si è affermato a partire dagli anni ’90 anche per la congiuntura favorevole con lo sviluppo delle nuove tecnologie che hanno valorizzato la costruzione collaborativa della conoscenza potenziata dalla rete. In generale, oggi la ricerca educativa fondata su evidenze, pur riconoscendo la rilevanza teorica e storica di questo approccio, ha messo in risalto il suo sostanziale fallimento sul piano di una propositività didattica efficace (Hattie, 2009). Per il punto sulla questione cfr. Tobias & Duffy, 2009.
1 **Più si è esposti a stimoli più si impara.** L’errore sta nel non conoscere i limiti fisiologici della memoria a breve termine che fanno sì che fornire un numero troppo elevato di stimoli agli allievi significhi solo aumentare il sovraccarico cognitivo degli studenti, ossia l’impegno di risorse mentali non direttamente funzionali all’apprendimento, come dimostrato dalla già citata CLT (Clark, Nguyen, & Sweller, 2006; Clark 2010). Le evidenze raccolte, in particolare hanno ormai dimostrato la fallacia di affermazioni analoghe, relative in particolare all’impiego delle tecnologie digitali (del tipo «più multimedialità = più apprendimento»), e il fatto che una buona regola, in particolare con soggetti novizi, è sempre quella di mettere in evidenza le informazioni essenziali, eliminando quanto più possibile gli stimoli distrattivi.

2. **Solo un apprendimento basato sull’esperienza pratica consente di fare apprendimento attivo e significativo.** Questa affermazione rappresenta una cattiva interpretazione del learning by doing di origine deweyana. Due considerazioni al riguardo. La prima è che non tutte le esperienze hanno lo stesso valore sul piano formativo; in generale non si impara dall’esperienza in sé ma dalla riflessione sull’esperienza. La pratica ha valore soprattutto quando si può considerare «pratica deliberata» (Ericsson, Krampe, & Tesch-Römer, 1993), una forma di pratica motivata e orientata a obiettivi precisi, capace così di mettere alla prova e revisionare sistematicamente i propri schemi e strutture di pensiero. La seconda riguarda il fatto che la maggior parte degli apprendimenti, in particolare dall’ingresso nel percorso scolastico, deve necessariamente prescindere dalla esperienza diretta: non è certo immaginabile un sistema educativo che, nell’intento di trasmettere ai novizi il sapere esperto acquisito da una società nel corso della sua storia, pensi di farlo riprendere per esperienza diretta o per prova ed errori! La maggior parte dell’apprendimento non può che basarsi sulla comprensione e lo studio di testi scritti. Ausubel ha mostrato già negli anni ’70 come lo studio di un testo può essere «attivo» e portare ad apprendimento «significativo» se si genera una proficua dinamica tra preconoscenze e loro ristrutturazione, e come l’identificazione di tali apprendimenti con l’esperienza diretta rappresenti un equivoco estremamente dannoso per l’educazione (Ausubel, 2004).

3. **I ragazzi imparano meglio se li si lascia sperimentare e costruire i concetti da soli.** Gli studenti raramente hanno la consapevolezza necessaria per capire immediatamente (e da soli) quali sono gli elementi più importanti del percorso e come affrontarlo lo studio. Se lasciati da soli tendono a disperdere i loro sforzi in direzioni irrilevanti o poco produttive e non procedono oltre le proprie preconoscenze e misconcezioni. Come
già osservato (Marzano et al. 2001; Hattie, 2009) la guida istruttiva, che non vuol dire fornire soluzioni preconfezionate, è un elemento fondamentale per consentire un avanzamento degli apprendimenti.

4. **Il miglior metodo didattico è quello per problemi e per scoperta.** È un’asserzione di taglio simile alla precedente. L’apprendimento per scoperta richiede tempi lunghi e capacità di base consolidate. Le evidenze dicono che per i novizi è molto più efficace insegnare strategie esplicite per risolvere famiglie di problemi (problem solving teaching), presentare soluzioni paradigmatiche passo-passo a problemi tipici (worked examples), lavorare con la dimostrazione e il modellamento. Il problem based learning, ossia il partire dall’analisi di un problema e dalla costruzione autonoma di possibili strategie di soluzione, dovrebbe essere riservato agli studenti già esperti in un dato dominio, proponendo comunque problemi che siano alla loro portata. In generale l’aiuto va regolato in funzione dell’expertise degli alunni.

5. **I ragazzi imparano meglio quando fanno lavori di gruppo.** Il semplice «stare insieme» non comporta automaticamente apprendimento. In un gruppo di 4 persone, due potrebbero interagire attivamente, uno occasionalmente ed uno perlopiù essere escluso. I lavori di gruppo producono una buona interazione cognitiva solo quando il gruppo è piccolissimo, ossia si lavora a coppie (soluzione migliore) o al massimo a gruppi di tre, e i ruoli sono strutturati, ossia ogni membro ha il proprio compito (es. l’ideatore, il valutatore, il relatore, …) e le proprie responsabilità. In tal modo ognuno è chiamato ad interagire cognitivamente con gli altri, pena il non funzionamento del gruppo. Sono le attività didattiche di gruppo strutturate a essere le più efficaci (Hattie, 2017), quali il Peer tutoring (ES 0.53) lo Small group learning (ES 0.47), il Jigsaw (ES 1.20), e in particolare quelle in cui il lavoro di gruppo si combina con l’attivazione di processi metacognitivi come nel Reciprocal teaching (ES 0.70).

6. **Se hai capito il concetto una volta, poi lo saprai applicare sempre.** La fallacia qui sta nel non considerare il problema del transfer degli apprendimenti. Da un lato, comprendere un concetto non vuol dire automatica-

22 I metodi basati su problem based learning e su inquiry ottengono rispettivamente un ES di 0.26 e 0.40 (Hattie, 2017), rispetto allo 0.68 dei metodi guidati verso obiettivi. Nessuno nega che in certi contesti non si debbano usare tecniche inquiry, anzi tecniche euristiche dovrebbero essere incorporate nella stessa pratica della lezione espositiva o dimostrativa, come suggerito anche da Bruner. Il problema riguarda le intransigenti assolutizzazioni di taglio attivistiche e costruttivistiche che periodicamente riprendono fiato. Come osserva Mayer (2004, p. 17): «Come degli zombie che riescono dai sepolcri i sostenitori della didattica per scoperta continuano periodicamente a risorgere».

ECPS Journal – 18/2018
http://www.ledonline.it/ECPS-Journal/

323
mente saperlo applicare. Dall’altro, saperlo applicare in una situazione nota non vuol dire saperlo applicare automaticamente in una situazione non nota, anche perché per farlo bisognerebbe: (i) capire se in quella situazione serve proprio quel concetto; (ii) utilizzarlo nel modo corretto per quella situazione; (iii) capire, mentre lo si utilizza, se lo si sta utilizzando bene, in relazione alle informazioni che via via si esperiscono nell’uso del concetto stesso in situazione. Il transfer di quanto appreso si divide infatti in near transfer (applicazione automatica dei contenuti appresi a situazioni già conosciute) e far transfer (adattamento dei contenuti appresi a situazioni nuove, mai viste prima in quella forma).

7. **Se l’alluno non è interessato a un argomento bisogna prima motivarlo con attività preliminari.** Bisogna considerare che le «attività preliminari» sono spesso slegate dall’argomento da apprendere e dunque favoriscono il prodursi di carico cognitivo estraneo (Clark, Nguyen, & Sweller, 2006). La ricerca ha mostrato che conviene agire sin dall’inizio nello sviluppo dell’autoefficacia dell’alluno, vero propulsore della motivazione (Bandura, 1996). Per questo è importante mettere i soggetti di fronte a problemi della «giusta» difficoltà, che rappresentino per loro delle sfide ottimali (Harter, 1978), ossia compiti stimolanti di livello lievemente più difficile rispetto a ciò che sono già in grado di fare, ma non così difficile da indurre nei soggetti la paura dell’insuccesso o la percezione di inefficacia.

8. **Una buona didattica deve partire dagli stili di apprendimento degli allievi.** Nonostante la presenza di un’ampia letteratura sugli stili di apprendimento che enfatizza l’importanza per gli insegnanti di produrre materiali adeguati per discenti «uditivi», «visivi» e «cinestetici», non esistono evidenze solide in merito all’efficacia di tali approcci (Clark, Nguyen, & Sweller, 2006; Kratzig & Arbuthnott, 2006). Non può allora non stupire come nelle raccomandazioni didattiche, anche in ambito accademico, si trovino indicazioni del genere; ricercatori e insegnanti prima di parlar di stili di apprendimento dovrebbero sapere che non si è mai riusciti a dimostrare l’efficacia di un programma basato su di essi. Quella degli «stili di apprendimento» è ormai considerata una delle mitologie della psicologia del Novecento (Lilienfeld et al., 2011) 23.

23 Ovviamente dal discorso vanno esclusi i soggetti con disabilità sensoriale. Inoltre l’inefficacia di una didattica basata sugli stili di apprendimento non significa certo che non esistano differenze rilevanti di cui occorre tener conto per favorire gli apprendimenti (queste vanno ricercate soprattutto nelle preconoscenze, nel linguaggio, nel livello cognitivo, nel l’autoefficacia).
2.3. Preparare quadri tassonomici integrando evidenze e argomentazioni razionali

La logica decisionale in educazione è di natura multifattoriale in ragione della molteplicità di istanze e variabili che possono pesare differentemente nei diversi contesti. Così intesa, un’analisi fondata sulle evidenze disponibili può fare da punto di riferimento per la formulazione di tassonomie razionalmente organizzate in campi di decisione complessi, nei quali tuttavia queste, se pur necessarie come base, non possono essere sufficienti per guidare le scelte didattiche. Per esemplificare questo approccio, ci possiamo riferire al campo delle tecnologie digitali per apprendere 24, un ambito di grande rilevanza intorno al quale da molti anni, come noto, si ripropone un dibattito sostanzialmente sterile, nella sua contrapposizione pregiudiziale tra «fautori» e «contrari». È possibile superare questo stallo impiegando un approccio più razionale e scientificamente fondato?

Il ragionamento che suggeriamo è di partire dalle evidenze, per poi passare alle argomentazioni che si possono fare al loro intorno, valutando le circostanze per le quali le evidenze non possono esserci d’aiuto (Fig. 1).

\[\text{Figura 1. – Schema esemplificativo dell’argomentazione sulle tecnologie per apprendere.}\]

24 Tale argomentazione è discussa e documentata analiticamente in Bonaiuti et al., 2017. L’ambito delle tecnologie per apprendere è uno dei tre macro-ambienti in cui si può articolare la complessa problematica delle tecnologie nella scuola. Gli altri due riguardano le tecnologie per il contesto didattico, relative all’uso dei mezzi tecnologici per migliorare ciò che riguarda la comunicazione interna alla scuola, la gestione dei processi di apprendimento, la formazione degli insegnanti, e le tecnologie come oggetto di apprendimento, vale a dire le conoscenze e competenze di base che tutti gli studenti devono acquisire per la «sopravvivenza» in una società digitale, dunque la «competenza digitale». Ciascuno di questi ambienti va considerato secondo criteri di valutazione diversi.
La prima domanda è dunque: *Ci sono evidenze sul rapporto tra introduzione delle tecnologie nella scuola e apprendimenti?* La risposta è positiva, esiste un vasto corpus di evidenze; a fronte della retorica ricorrente sull’innovazione tecnologico-scolastica, queste mostrano come le tecnologie nella scuola mediamente, soprattutto se introdotte in modo massiccio e non adeguatamente finalizzato, non comportino un miglioramento significativo degli apprendimenti. Sappiamo anche che il fattore fondamentale a tale fine non sono le tecnologie, quanto piuttosto le metodologie, in particolare per il sovraccarico e la dispersività che le prime generalmente comportano con soggetti in età evolutiva.

L’indicazione di cautela che viene da questo dato massiccio non dovrebbe essere sottostimata; tuttavia se l’analisi si fermasse a questo livello, dovremmo ricavarne l’indicazione categoria di non impiegare le tecnologie come mezzo diretto di cui gli alunni dovrebbero avvalersi per migliorare l’apprendimento, suggerimento che però in circostanze particolari si può rivelare poco adeguato.

Innanzitutto c’è il fatto che andando oltre i dati medi, in controtendenza rispetto a questo trend generale, la ricerca porta anche alla luce, se pur non in misura molto ampia, alcune evidenze positive di cui occorre tenere conto (ad esempio nell’ambito di applicazioni tutoriali, video interattivi, video-modeling) \(^{25}\).

Tuttavia, un’analisi delle evidenze non esaurisce la gamma delle situazioni per le quali possono risultare utili le tecnologie. Diventa allora necessaria un’analisi più dettagliata che ci consenta di tenere meglio conto della varietà delle situazioni in cui può presentarsi la necessità del loro impiego. Intanto c’è il fatto che non tutte le decisioni che riguardano l’impiego delle tecnologie, come anche delle azioni didattiche in genere, necessitano di passare da una base scientifica; esistono situazioni in cui le tecnologie (o determinati interventi) sono di “ovvia utilità”; si pensi a quelle in cui la tecnologia è il fattore indispensabile, abilitante per accedere all’apprendimento stesso, come nel caso dei dispositivi per le disabilità (es. un sintetizzatore vocale per un non vedente o dispositivi di input-output speciali).

Esistono poi casi in cui il confronto tra situazioni con e situazioni senza tecnologie risulta privo di senso, perché le tecnologie modificano la...

\(^{25}\) La ricerca mostra anche che alcune condizioni di applicazione aumentano i livelli di efficacia, quali: uso supplementare all’insegnamento tradizionale e non sostitutivo; guida costante del docente (soprattutto per i più giovani) e ben allineato con obiettivi di apprendimento; formazione specifica dell’insegnante all’uso didattico delle tecnologie; programmi limitati nel tempo, con uso regolare e costante; uso collaborativo in coppie o piccoli gruppi, invece che individuale; supporto intensivo a alunni BES o con scarsi risultati di profitto (Higgins, Xiao, & Katsipataki, 2012).
natura stessa del processo di apprendimento, dando origine a setting non assimilabili a quelli alternativi (si pensi allo sviluppo e valutazione di competenze di orientamento spaziale attraverso l’uso di mappe digitali interattive vs la stessa attività su carta o all’attuazione di strategie collaborative di in rete vs in presenza).

Ci sono ambiti che rimangono intrinsecamente incerti e che vanno valutati caso per caso, come quelli in cui le tecnologie possono dare qualcosa di più attraverso l’aumento informativo o esperenziale (si pensi basicamente a un’enciclopedia online o a simulazioni immersive, come un’esplorazione virtuale): l’esito può risultare positivo laddove le informazioni aggiuntive risultino coerenti con gli schemi cognitivi attivati nel processo di apprendimento e significative per la loro revisione, anche se nella maggior parte dei casi rimangono fonte di dispersività e di sovraccarico, come ha dimostrato la CLT.

Ci sono poi ambiti ancora da esplorare e che al momento possiamo considerare «promettenti»; si pensi, per fare solo un esempio, all’uso della realtà virtuale e aumentata e della robotica per insegnare le abilità sociali a soggetti autistici.

In ambito di potenziale latente delle tecnologie, in particolare nelle mani di insegnanti esperti, certe affordance possono diventare un’opportunità per sviluppare riflessioni di livello più alto, trasformando le tecnologie in mind tool (strumenti cognitivi), aspetto che una lunga tradizione educativa, da Papert (1980, 1992) a Jonassen (1996), ha da sempre esaltato (così ad esempio un semplice word processor o un foglio di calcolo possono diventare strumenti per una riflessione più profonda sull’organizzazione di un testo o sulla natura di un modello concettuale con variabili interdipendenti).

Le domande che l’insegnante si dovrebbe porre al momento della decisione sull’uso delle tecnologie per migliorare gli apprendimenti degli alunni sono dunque le seguenti: (i) cosa intendo ottenere con le tecnologie? (ii) la situazione che intendo allestire rientra in una di queste categorie? (iii) quali consigli e avvertenze specifiche mi fornisce la ricerca data la categoria di impiego in cui mi ritrovo?

Al di là dello schema specifico, l’importante è disporre di un modello concettuale di riferimento eventualmente falsificabile o perfettibile con nuovi dati e situazioni capaci di arricchire e differenziare la casistica di riferimento, usando così dalla sterile contrapposizione tra ideologismi che da decenni paralizza l’avanzamento in questa materia.

26 Ad esempio, si veda il progetto Kaspar (http://www.herts.ac.uk/kaspar).
3. PARTE TERZA – LA FORMAZIONE DI NUOVI SCIENZIATI DELL’EDUCAZIONE E L’ASSUNZIONE DI NUOVE RESPONSABILITÀ DELLA RICERCA EDUCATIVA VERSO LA SCUOLA

3.1. Lo stato della ricerca didattica in Italia

I problemi che ci troviamo dinanzi non sono molto diversi da quelli che lamentavano Visalberghi circa cinquant’anni fa e più recentemente Bottani (2009, esergo). L’innovazione didattica continua a essere un coacervo di istanze (esigenze politiche, movimenti di opinione, mode e slogan estemporanei) che periodicamente si impongono, mettono in moto iniziative anche con impiego di mezzi rilevanti e generalmente falliscono, lasciando alle spalle spreco di energie e disorientamento, senza una qualche rendicontazione che possa far apprendere dagli errori precedenti.

Così l’idea che l’introduzione massiccia di tecnologie nella scuola o che uno spostamento da un approccio teacher-based a una centralità del learning by doing siano le vie da perseguire per il miglioramento della scuola hanno rappresentato tra le concezioni più ingenue che periodicamente si sono ripresentate nei decenni. Queste cornici generali assumono via via nuovi formati e slogan di turno (tra quelli che brillano al momento si pensi al digital storytelling, allo spaced-learning, alle flipped classroom\(^{27}\), alle classi senza zaino, al metodo analogico nella matematica)\(^{28}\). Dove sono le evidenze, o quanto meno dove risiede la fondatezza scientifica che garantirebbe l’efficacia di una didattica che staretbe dietro queste formule?

A fronte delle pratiche ingenue e delle mode, la ricerca didattica mette in campo un adeguato sistema di anticorpi? Un semplice sguardo alla letteratura nel contesto italiano è sufficiente a mostrare che sussistono criticità metodologiche rilevanti che impediscono alla ricerca didattica corrente di rispettare quelle condizioni che possono garantire una comparabilità dei dati e dunque di realizzare un reale avanzamento della conoscenza. Possiamo così schematizzarle\(^{29}\):

\(^{28}\) Non sono immuni dalla fascinazione degli slogan della didattica i decisori della politica. Così si esprime il neo Ministro dell’Istruzione Marco Bussetti: «Dobbiamo cambiare impostazione della didattica; usare le nuove tecnologie, insegnare a relazionarsi con i social media, valorizzare il public speaking e il debate, puntare sulle materie STEM (scienze, tecnologia, ingegneria e matematica). Il tablet sarà il nuovo quaderno tra pochi anni, possiamo usare meglio investimenti fatti» (intervista al Corriere della Sera, 31/08/2018).

\(^{29}\) Queste osservazioni avrebbero senz’altro bisogno di un riscontro quantitativo più preciso. Sono emerse nel corso dell’attività di valutazione condotta da uno degli autori (Calvani)
a. Gran parte dei lavori accademici si presenta nella forma di riflessioni personali, condizionate dalle ideologie di riferimento assunte aprioristicamente; quasi mai i riferimenti oggetto di analisi (metodi e teorie didattiche) vengono selezionati, descritti con cura e considerati sulla base di valutazioni delle evidenze o comunque alla luce di una esaustiva documentazione.

b. Le indagini empiriche rimangono per lo più rivolte ad una descrizione statica della situazione (*survey* sulle pratiche didattiche o tecniche; questionari di opinione o di atteggiamento, ad esempio verso le tecnologie, verso l’inclusione ecc.).

c. Il richiamo a metodologie qualitative o a metodi misti assume spesso ad alibi per coprire una scarsa trasparenza sulle modalità procedurali della ricerca e per giustificare l’inconcludenza dei risultati (“i dati ottenuti sono promettenti” ma “la ricerca è ancora in fase esplorativa e necessita di ulteriori approfondimenti”, è un ritornello ricorrente).

In breve, tranne poche eccezioni, la ricerca didattica nel contesto italiano attuale rimane molto autoreferenziale e connotata ideologicamente, statica, inconcludente, carente sul piano di una propositività razionalmente fondata.

3.2. La formazione delle future generazioni di ricercatori

Cosa fare? È di rilevanza strategica orientare i futuri ricercatori ad una maggiore consapevolezza critico-metodologica, questione con la quale i nuovi curricoli universitari, volti alla formazione dei professionisti della ricerca educativa, dovrebbero sempre più confrontarsi. Occorre favorire il rafforzamento di discipline come metodologia della ricerca educativa, pedagogia sperimentale, docimologia e statistica, insegnamenti che nel corso degli ultimi decenni sembrano però aver diminuito la loro incidenza nei curricoli accademici dell’area pedagogica in Italia, a favore di approcci di taglio filosofico e fenomenologico. Chi fa ricerca deve in primo luogo sapersi ben raccordare al tessuto delle conoscenze e ipotesi acquisite, selezionando le «piste più promettenti», scartando quelle «inadeguate o scorrette», sulla base delle evidenze disponibili (vd. Bloom, 1966, esergo). Individuata la propria collocazione in tale quadro, il ricercatore è chiamato a esplicitare con chiarezza l’ipotesi avanzata, per poi accompagnarla con coerenza in ogni passo della ricerca, dimostrando come si tengono sotto controllo le variabili di disturbo, motivando le modalità di raccolta dei dati, documentando la loro rappresentatività, i livelli di significatività statistica conseguiti, e la rilevanza sul piano della significatività pratica, rivalutando infine criticamente i risultati in funzione delle ipotesi avanzate e ricollocando questi in rapporto alle conoscenze pregresse, secondo i canoni che la pedagogia sperimentale ha più volte rimarcato e che ogni ricercatore dovrebbe padroneggiare 31.

Ma oltre alle conoscenze e alle competenze classiche di metodologia della ricerca sono oggi necessarie ulteriori competenze ed abilità, purtroppo ancora scarsamente sviluppate (Chalmers, Hedges, & Cooper, 2002), come quelle di infobrokering che consentono di accedere e selezionare criticamente la migliore documentazione scientifica disponibile in rete. Sull’ipotesi di ricerca avanzata quasi sempre autorevoli gruppi di ricerca o centri

internazionali hanno già pubblicato ampie sintesi di ricerca (Pellegrini & Vivanet, 2018) e sistematiche linee guida; ignorare questi lavori comporta il continuo ripetersi di spreco di risorse per produrre alla fine, nel migliore dei casi, la «scoperta dell’acqua calda», quando non fuorvianti disconoscimenti, dovuti al fatto di lavorare localmente con piccole quantità di dati e all’interno di quadri teorici di dubbia affidabilità.

Anche se la costruzione attiva di meta-analisi richiede competenze avanzate e rimane attualmente di scarsa praticabilità per un contesto come quello italiano così povero anche di singole indagini sperimentali, ciò non esime, da un lato, dall’avvalersi della conoscenza dei lavori già compiuti dagli organismi internazionali e dall’altro, dalla compilazione almeno di revisioni sistematiche per il nostro contesto (Cardarello, 2015).

3.3. Nuove forme di collaborazione tra università e scuola

La cultura accademica dovrebbe anche caratterizzarsi per un atteggiamento più critico verso le credenze ingenuhe che circolano nella scuola (vd. par. 2.2), aiutando gli insegnanti, sottoposti a una continua manipolazione ideologica, a sbarazzarsene. È anche responsabilità dell’università passare da una formazione basata solo su modelli pedagogici di carattere teorico a indicazioni operative orientate verso il conseguimento di obiettivi ben definiti in un’ottica di valutazione e miglioramento continuo. Dagli anni ’70 agli anni ’90 del secolo scorso alle scuole italiane è stato concesso di sperimentare nuovi percorsi didattici. Si è trattato di un ventennio di pseudo-sperimentazioni. La maggior parte delle scuole italiane ha fatto qualche modifica, più o meno rilevante, nei programmi. Di tutta questa attività non si è avuta alcuna rendicontazione, sia a livello di singola scuola, sia a livello nazionale, capace di consentire avanzamenti per successive azioni migliorative. È seguita poi una nuova fase, caratterizzata dalla facoltà delle scuole di avanzare «progetti», all’insegna dell’autonomia, con una frenesia dispersiva caratterizzata da ipotesi per lo più povere nei fondamenti teorici e sistematicamente carenti nella rendicontazione (Calvani & Menichetti, 2015).

Oggi bisogna passare ad una nuova fase. La ricerca sulle evidenze, con gli apporti di altre scienze, ci mostra con migliore chiarezza quali modelli di istruzione, programmi o metodi hanno maggiore probabilità di funzionare meglio, tenuto conto anche del contesto culturale, organizzativo e sociale della scuola specifica.

La comunità accademica dovrebbe allora intervenire aiutando la selezione di tali programmi di intervento secondo un piano di priorità che tenga conto da un lato degli ambiti tematici (saperi, competenze) in cui
esiste nel nostro paese un gap negativo rispetto agli standard internazionali e dall’altro dei programmi che hanno dato prova di maggiore efficacia in quel particolare ambito.

La cosa più importante per chiunque intenda proporre un programma in qualche modo «innovativo» nella scuola, è comunque documentarsi su quanto è stato fatto in altri paesi e in altri tempi: si dovrebbe ricordare che i metodi didattici, in qualunque forma si presentino, e al di là anche dell’etichetta che li contrassegna al momento, non sono quasi mai una reale novità; da qualche parte, o anche nel nostro stesso paese in passato, ci sono stati educatori e insegnanti che li hanno praticati in forme e con aspettative quanto meno simili: capire quale insegnamento si può ricavare dalla loro vicenda diventa il primo passo per uscire da quella frenesia innovativa che caratterizza la scuola, a favore invece di una saggezza decisionale «informata da evidenze».

4. Conclusioni

È possibile valutare con ragionevole affidabilità se un programma, un modello d’istruzione, un metodo o una strategia didattica, possa essere più efficace di un altro, e in funzione di quali fattori circostanziali il risultato possa risultare migliorato o peggiorato? È possibile così fornire ai decisori suggerimenti utili, in modo che questi rinuncino all’improvvisazione e adottino interventi che hanno maggiore probabilità di funzionare bene, con conseguente risparmio di risorse finanziarie e umane?

La tesi che il Manifesto nella sua prima versione ha avanzato, e che in questo lavoro è stata ripresa, è che oggi questo diventa possibile, in una misura nettamente più rilevante rispetto a dieci-venti anni fa. All’interno del mondo dell’educazione l’istruzione si è munita delle strumentazioni che consentono di mettere più consapevolmente in disparte l’opinionismo e l’ideologismo che da sempre l’hanno connotata, per diventare una scienza, basata su fatti, smentite e conferme, come numerosi pedagogisti già nel passato avevano prefigurato e auspicato.

Che le nuove metodologie di ricerca che consentono di conseguire conoscenza affidabile attraverso sintesi di conoscenza compiute basate su grandissime quantità di dati non siano semplici e che i rischi di errore siano sempre in agguato a ogni passaggio procedurale è fuori di dubbio; sta di fatto che, pur a fronte di queste difficoltà, si è ormai compiuta per la ricerca sull’istruzione una svolta senza ritorno con l’avvio di un percorso che può permettere più sistematiche ed accurate forme di cumulabilità delle conoscenze.
Anche se in futuro ci saranno momenti di temporaneo stallo (le controversie sono inevitabili ed anche auspicabili), questi si colocheranno comunque all’interno di un quadro di sistematizzazione del sapere acquisito, in modo che questo possa essere via via revisionato e arricchito.

Tutto ciò non significa che l’EBE e le sue metodologie possano da sole soddisfare appieno l’esigenza di una istruzione come scienza; questa fornisce oggi verifiche intorno all’efficacia di singole azioni didattiche o a quadri teorici che vengono da altri settori. Non significa neanche che la ricerca qualitativa, nelle sue diverse articolazioni, non possa svolgere un ruolo di particolare utilità. La ricerca educativa nel suo complesso ha e avrà sicuramente bisogno di contributi da più versanti e una migliore qualità dei lavori potrà emergere da una varietà e multidimensionalità di approcci. Si devono tuttavia comprendere bene le specificità e i limiti propri della metodologia che si intende impiegare. E per un ricercatore educativo si impone oggi una scelta preliminare più chiara e consapevole: optare per un approccio di taglio teorico-speculativo o fenomenologico, narratologico, ermeneutico, o intraprendere il cammino dell’istruzione come scienza. A giudizio degli estensori del Manifesto affascinanti prospettive e ruoli di maggiore rilevanza si prospettano per le nuove generazioni degli scienziati dell’istruzione e dell’apprendimento, date le strumentazioni nuove di cui la ricerca si viene ormai sempre più dotando, e data la crescente importanza che la conoscenza sull’efficacia delle diverse azioni didattiche viene ad assumere presso le istituzioni educative.

Riferimenti bibliografici

Bruni, F., & Vivanet, G. (2013). Evidence Based Education. Centri di ricerca e risorse in Rete. Form@re – Open Journal per la Formazione in Rete, 13(2), 102-106.

Riassunto

Vengono qui sviluppate alcune tesi già formulate nel Manifesto di S.Ap.I.E. (Società per l’Apprendimento e l’Istruzione informati da Evidenza)\(^3\). Dapprima si richiamano i significativi avanzamenti nella ricerca educativa che hanno caratterizzato il nuovo millennio, connessi all’avvento dell’Evidence-Based Education ed alle convergenze che si riscontrano tra questo orientamento ed altri settori, che segnano una svolta in senso scientifico nell’ambito dell’istruzione con il profilarsi di un nuovo dominio (Scienza dell’istruzione e dell’apprendimento). Si esaminano poi alcuni sviluppi, adesso possibili, che riguardano: l’individuazione di principi fondamentali dell’istruzione e le conseguenti raccomandazioni a cui gli insegnanti dovrebbero far riferimento; la revisione critica di credenze infondate diffuse nel mondo della didattica; la possibilità di delineare quadri tassonomici razionali, informati da evidenze, a supporto delle decisioni educative (esemplificandola nell’ambito delle tecnologie digitali per apprendere). Infine ci si sofferma sulle sfide che si presentano per la nuova generazione degli scienziati dell’istruzione, nell’auspicio che si voglia superare la situazione di stallo in cui si trova attualmente la ricerca didattica italiana. Queste riguardano prioritariamente: (i) la formazione pedagogica universitaria in cui la pedagogia sperimentale e la metodologia della ricerca

\(^3\) Il Manifesto è stato pubblicato nella sua prima versione il 13/02/2017 ed è scaricabile all’indirizzo http://www.sapie.it/index.php/it/chi-siamo/manifesto. L’Associazione S.Ap.I.E. è nata nel 2015 con lo scopo di favorire la messa in pratica di modelli didattici basati su evidenze scientifiche. Questo lavoro rappresenta una parziale rivisitazione di tale versione con la messa a fuoco su alcune sezioni, a scapito di altre che per motivi di spazio non è stato possibile riconsiderare. All’interno di una impostazione condivisa, più specificatamente Roberto Trinchero ha curato il paragrafo 2.2; Giuliano Vivianet i paragrafi 2.3, 3.2, 3.3; Antonio Calvani le altre parti.
dovrebbero fare da pilastro all’interno di una concezione critica dell’affidabilità della conoscenza; (ii) le nuove forme di collaborazione tra università e scuola che, abbandonando i modelli vigenti di scarsa incisività, dovrebbero essere più consapevolmente orientate ad attuare sperimentazioni coerenti con interventi che hanno dato prove di efficacia.

Parole chiave: Affidabilità; Educazione basata su evidenza; Efficacia; Istruzione; Metodi di ricerca.