22
December 2020

Gaetano Domenici
Editoriale / Editorial
Lockdown e didattica emergenziale: una criticità non risolta 11
(Lockdown and Emergency Didactics: An Unresolved Weakness)

Studi e Contributi di Ricerca
Studies and Research Contributions

Jean Ecalle - Jean-Luc Vidalenc - Annie Magnan
Computer-based Training Programs to Stimulate Learning 23
to Read in French for Newcomer Migrant Children:
A Pilot Study
(Programmi di formazione realizzati con software computerizzati
per stimolare l’apprendimento della lettura in francese per i bambini
migranti nuovi arrivati: uno studio pilota)

Agostino Portera - Michael S. Trevisan - Marta Milani
A Status Report on School Intercultural Mediation in Europe 49
(Report sullo status della mediazione scolastica interculturale in Europa)
Maria Grazia Crispiatico - Patrizia Bestetti - Veronica Velasco
Corrado Celata - Liliana Coppola - Gruppo Estensione LST
La progettazione scolastica orientata alla promozione della salute. Un percorso di dialogo intersettoriale per l’allineamento delle competenze chiave per l’apprendimento e «life skill»
(School Planning Oriented to Health Promotion. A Process of Intersectoral Dialogue for the Alignment of Key Competences for Learning and Life Skills)

Marika Calenda - Concetta Ferrantino - Annamaria Petolicchio
Prove di comprensione del testo: dalla somministrazione alla revisione
(Reading Comprehension Tests: From Administration to Revision)

Relmu Gedda Muñoz - Natalia Villagrán del Picó
Academic Self-concept in University Students: Their Association with Parents’ Educational Level and Previous Experience in Higher Education
(Concetto di sé accademico: associazione con il livello di istruzione dei genitori e con le esperienze precedenti nell’istruzione superiore)

Antonio Marzano - Antonio Calvani
Evidence Based Education e didattica efficace: come integrare conoscenze metodologiche e tecnologiche nella formazione degli insegnanti
(Evidence Based Education and Effective Teaching: How to Integrate Methodological and Technological Knowledge into Teacher Training)

Hendrikus Midun - Oswaldus Bule - Widdy H.F. Rorimpandey
The Effect of Scaffolding on Assignment Quality and Procedural Learning Achievement
(L’effetto dell’attività di scaffolding per il raggiungimento del successo nell’apprendimento procedurale)

Alhemaidi Mohammed Aldhaidan
Influencing Factors in Psychological Resilience: A Study on the Role of Emotional Reassurance and Optimism as Predictive Dimensions
(I fattori influenti nella resilienza psicologica: uno studio sul ruolo della rassicurazione emotiva e dell’ottimismo quali dimensioni predittive)
Giulia Vettori - Claudio Vezzani - Lucia Bigozzi - Giuliana Pinto
Assessing the Multidimensionality of Students’ Learning Orientations: The Use of LO-COMPASS for the Well-being and Scholastic Success
(Valutare la multidimensionalità degli orientamenti verso l’apprendimento degli studenti: l’utilizzo di LO-COMPASS per il benessere ed il successo scolastico)

Note di Ricerca
Research Notes

Ceyda Şensin - Guido Benvenuto - Émiliane Rubat du Mérac
Teaching Non-Italian Students: Italian Adaptation of the Questionnaire on Teachers’ Perspectives
(Insegnare agli studenti non italiani: adattamento in italiano del Questionario sulle percezioni degli insegnanti)

Commenti, Riflessioni, Presentazioni, Resoconti, Dibattiti, Interviste
Comments, Reflections, Presentations, Reports, Debates, Interviews

Giuseppe Martinez y Cabrera
Scuola: criticità organizzative
(School: Organizational Criticalities)

Journal of Educational, Cultural and Psychological Studies
Notiziario / News

Author Guidelines
The Effect of Scaffolding on Assignment Quality and Procedural Learning Achievement

Hendrikus Midun¹ - Oswaldus Bule¹
Widdy H.F. Rorimpandey²

¹ Universitas Katolik Indonesia Santu Paulus Ruteng
² Universitas Negeri Manado (Indonesia)

do: https://dx.doi.org/10.7358/ecps-2020-022-midu

Abstract

Some problems experienced by millennial students when they learn by online include learning control, learning disorientation, and cognitive load. This study aims to examine the effect of scaffolding use on assignment quality and procedural cognitive learning achievement in the implementation of inverted or flipped (IF) classroom strategies. This study involved students of the pre-service study program of Indonesian Catholic University of Ruteng. The total research subjects were 78 students. They were divided into experimental and control groups. The experimental group is assisted by scaffolding, while the control group without scaffolding. The study design used a pretest-posttest experimental control group design and data collection using questionnaires and tests. Data analysis using multivariate analysis (MANOVA). The results showed that the use of scaffolding increased the effectiveness of implementing IF classroom strategies on student assignment quality and procedural learning achievement. The implications of the research for future study and learning practices can be explained.
Keywords: Assignment quality; Inverted classroom; Procedure learning achievement; Quantitative research; Scaffolding.

INTRODUCTION

Information and communication technology (ICT) gave birth to the industrial revolution 4.0. Revolution 4.0 encourages and forces educational institutions to integrate internet use in learning. The integration of ICT in learning can improve mobility, accessibility and interactivity of the learning process that has not been fulfilled in traditional learning (Valencia-Arias, Cano, & Arango-Botero, 2019). IF classroom or flipped classroom (IF classroom) as one of the blended learning models adapts to the industrial revolution 4.0. Therefore, inverted classroom is considered as one form of innovative learning (Gannod, Burge, & Helmick, 2008; Strayer, 2012). As an innovative learning, IF classroom is based on the theory of active learning, constructivist learning, social learning, multimedia, and virtual learning (Davis, 2013). Based on these theories, IF classroom emphasizes process skills. By emphasizing process skills, applying IF classroom motivates students to be actively involved in the learning process, doing independent learning and critical thinking (Strayer, 2012; Schlingensiepen, 2014; Foster & Stagl, 2018).

However, are process skills effective in improving student learning achievement? Study done by Thomas & Philpot (2012) and Cruzado & Román (2015) found that although students feel happy with IF classroom, but it does not have an optimal impact on learning achievement. The question is why active learning activities, independent learning, and critical thinking, do not have an optimal impact on learning achievement? Similar studies have found that the application of online learning and or blended learning, on the one hand, can reduce the cost of education, but on the other hand can cause emotional problems for students. Students who study online are more likely to experience feelings of anger, anxiety, and helplessness than traditional learning students (Noteborn & García, 2016).

As one of the blended learning models, the implementation of IF classroom requires scaffolding. Scaffolding can lead students to learn more directed and can overcome learning disorientation and cognitive load they experience (Kalyuga, 2009; Hsieh, Lee, & Su, 2013), especially when they are not under teacher control or do independent learning (Butz, Stupnisky, & Pekrun, 2015). Although other findings reveal that the cognitive
load experienced by students is also caused by the complexity of the questions and tasks given by the teacher or lecturer to students (Zulu, Haupt, & Tramontin, 2018).

Why does an inverted classroom need scaffolding? IF classroom implementation (by the assist of the internet), on the one hand can provide wider and independent learning opportunities for students (Schlingensiepen, 2014). However, if extensive learning opportunities are not assisted by clear learning guidelines, it can be assumed that students will lose orientation and learning priorities, especially students who have low of self regulated learning (SRL) and self-efficacy (Zimmerman, Bonner, & Kovach, 2002).

Thus, scaffolding as one of the learning method variables (Reigeluth, Beatty, & Myers, 2017; Ige, 2019) is thought to increase the effectiveness of using IF classroom strategies. Previous study has not revealed explicitly, how instructors guide student learning when they conduct online study sessions. This study wants to express the effect of scaffolding on assignment quality and procedural cognitive learning achievement on learning using IF classroom strategies.

Procedural cognitive learning achievement is the ability obtained by students after learning activities to master the processes and criteria that must be met to get things done (Willingham, Nissen, & Bullemer, 1989; Anderson & Krathwohl, 2001). In this study, the procedural cognitive learning achievement which be measured was the ability of prospective teachers to design learning systematically after they attend the Curriculum Development lecture. This ability requires mastery of the curriculum or learning component, the relationship between curriculum components, and the sequence of learning activities.

1. Method

This study used a quasi-experimental design with a type of non-equivalent control group design. The researchers effort to reveal causal relationships among variables by involving experimental and control groups (Tuckman, 1999; Sung et al., 2015). Each group is treated. There are three variables in this study: (1) scaffolding as independent variables (two variations: textual hints and oral hints), (2) procedural cognitive learning achievement, and (3) assignments quality as independend variables as a dependent variables. High and low of assignments quality and procedural cognitive learning achievement are the effects of different treatments. The design shows that
both the experimental and control groups were both given pretest and posttest, treatment, and observation.

Based on the research design, two hypotheses are formulated: (1) There is the effect of implementing scaffolding on the quality of student assignments through the inverted classroom strategy; (2) There is the effect of implementing scaffolding on student procedural learning achievement through an inverted classroom strategy.

The subjects of this study were the third semester students of the pre service study program of Indonesian Catholic University of Ruteng, Indonesia who had taken courses in Curriculum Development. They were divided into the experimental and control classes. The characteristics of the research subjects included gender, age, and place of residence. The gender aspect, women are more than men. The most dominant age is 20-21 year. The majority of them live in boarding house. In summary the characteristics of the research subject are shown in Table 1.

<table>
<thead>
<tr>
<th>Descriptor</th>
<th>Experimental group</th>
<th>Control group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Female</td>
<td>29</td>
<td>28</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>Age (year)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-19</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>20-21</td>
<td>27</td>
<td>31</td>
</tr>
<tr>
<td>> 22</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>39</td>
</tr>
<tr>
<td>Place of residence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boarding house</td>
<td>24</td>
<td>26</td>
</tr>
<tr>
<td>Family</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>39</td>
</tr>
</tbody>
</table>

This research uses observation sheets and test. The observation sheet is used to measure the quality of completion of student assignments and tests are used to measure the prior knowledge and procedural cognitive learning achievement.

The test instruments used were in the form of multiple choices. Before being used, the instrument was tested for validity and reliability.
The instruments used in this study have met validity (correlation coefficient value of each item is greater than 0.3) and reliability (Cronbach coefficient is greater than 0.7) (Pallant, 2005).

This research goes through three stages: the pre-experimental, experimental, and post-experimental stages. In the pre-experimental stage, the researcher conducted a survey about the habits of students using online media, developing teaching materials and expert validation (two experts), making instruments and conducting tests to determine validity and reliability, and measuring prior knowledge of students. At the experimental stage, researchers form online groups, treatment action, and collect a portfolio of student assignments. Tutorial material, material links, and discussion development are delivered to students by online. Scaffolding in the form of textual hints is delivered online before class meetings, while for control class, oral instruction is given at class meetings. Treatment was carried out for eight meetings. At the post-experimental stage, the researcher assessed the students’ portfolios (eight tasks) and carried out the posttest exam.

This study uses multivariate analysis of variance (MANOVA) by the assisted of SPSS for Windows. Before being analyzed, the research data fulfilled the assumptions of data normality and homogeneity of variance. Through the tests of normality using the Kolmogorov-Smirnov technique, the results of both the experimental and control classes data are normality because the probability (P-value/Sig.) is greater than alpha (0.05). Furthermore, Levene’s test of equality of error variances shows that the data is homogeneous, because P-value is greater than alpha. The research hypothesis is accepted if the P-value is less than alpha. The strength and weak influence of the independent variable on the dependent variable depends on obtaining the partial eta squar value (η^2). The η^2 value < 0.06 includes the category of very low or no effect, the η^2 value 0.06 to 0.14 is medium category, and the η^2 value > 0.14 including the strong category (Cohen, 1988; Pallant, 2005).

2. Findigs

The number of questions to measure prior knowledge of students is 20 items and a score range of zero to one hundred. Each correct answer is given one score and the wrong answer is given a zero score. The results of the student pretest (prior knowledge) are shown in Table 2.
Table 2. – Central tendency values of students’ pretest.

<table>
<thead>
<tr>
<th>Class</th>
<th>N</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Std. Error</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental group</td>
<td>39</td>
<td>26.92</td>
<td>8.321</td>
<td>1.332</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Control group</td>
<td>39</td>
<td>27.18</td>
<td>9.445</td>
<td>1.512</td>
<td>10</td>
<td>45</td>
</tr>
<tr>
<td>Total</td>
<td>78</td>
<td>27.05</td>
<td>8.843</td>
<td>1.001</td>
<td>10</td>
<td>45</td>
</tr>
</tbody>
</table>

Table 2 shows that the experimental class has a less mean (0.26) than the control class. However, statistical analysis shows that P-value is greater than alpha (0.899 > 0.05) and F-count is less than F-table (0.016 < 3.967). Therefore, we can say that there was no significant difference in the value of the pretest between the experimental and control classes before being treated.

Student procedural cognitive learning achievement are measured using multiple choice tests. The number of questions is 20 items. Each number of questions answered correctly is given a one score and the incorrect answer is given a zero score. The central tendency values of posttest results are shown in Table 3 and the significance of the difference will be explained in the next points.

Table 3. – Central tendency values of posttest.

<table>
<thead>
<tr>
<th>Class</th>
<th>N</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Std. Error</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Class</td>
<td>39</td>
<td>73.21</td>
<td>9.423</td>
<td>1.509</td>
<td>55</td>
<td>90</td>
</tr>
<tr>
<td>Control Class</td>
<td>39</td>
<td>67.82</td>
<td>10.052</td>
<td>1.61</td>
<td>50</td>
<td>90</td>
</tr>
<tr>
<td>Total</td>
<td>78</td>
<td>70.51</td>
<td>10.051</td>
<td>1.138</td>
<td>50</td>
<td>90</td>
</tr>
</tbody>
</table>

2.1. Quality of assignment

The level of quality of student assignments is divided into three categories: good, enough and less. Good categories are given score 3, enough categories are given score 2, and the less categories are given score 1. The criteria description for each category are: (1) good categories (score 3): construct learning material by their own language, ideas richer and wider, and explore studies using other learning resources; (2) enough categories (score 2): tend to repeat learning material, there is an effort to construct learning materials with their own language but poor ideas; (3) less categories (score 1): answers only repeat learning material. Based on these criteria as a result of the assessment, the accumulated frequency of each category or score (3, 2, 1) in eight assignments are shown in Table 4 and the central tendency values of student assignments of student are shown in Table 5.
Table 4. – Accumulated frequency of score on eight assignments.

<table>
<thead>
<tr>
<th>Assignment to</th>
<th>Experimental Class (N = 39)</th>
<th>Control Class (N = 39)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Score 3</td>
<td>Score 2</td>
</tr>
<tr>
<td>First</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Second</td>
<td>4</td>
<td>26</td>
</tr>
<tr>
<td>Third</td>
<td>6</td>
<td>23</td>
</tr>
<tr>
<td>Fourth</td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>Fifth</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>Sixth</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>Seventh</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>Eighth</td>
<td>4</td>
<td>29</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
<td>173</td>
</tr>
<tr>
<td>Percentage (%)</td>
<td>13.5</td>
<td>55.4</td>
</tr>
</tbody>
</table>

Table 5. – Central tendency values of student assignments.

<table>
<thead>
<tr>
<th>Class</th>
<th>N</th>
<th>MEAN</th>
<th>STD. DEV.</th>
<th>STD. ERROR</th>
<th>MIN.</th>
<th>MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Class</td>
<td>39</td>
<td>1.838</td>
<td>0.3167</td>
<td>0.0507</td>
<td>1.3</td>
<td>2.4</td>
</tr>
<tr>
<td>Control Class</td>
<td>39</td>
<td>1.656</td>
<td>0.2836</td>
<td>0.0454</td>
<td>1.1</td>
<td>2.5</td>
</tr>
<tr>
<td>Total</td>
<td>78</td>
<td>1.747</td>
<td>0.3124</td>
<td>0.0354</td>
<td>1.1</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Based on Table 4, the frequency of each category can be explained that: (a) good category (score 3), experimental class 13.5% and control class 5.8%; (b) enough category (score 2), experimental class 55.4% and control class 53.2%; (c) less category (score 1), experimental class 31.8% and control class 41.0%; (d) both the experimental and control classes, the highest frequency was the less category (score 1), then the enough category (score 2), and finally the good category (score 3).

2.2. Scaffolding effect on procedural learning achievement and assignment quality

The alpha level (α) used for the statistical test is 0.05. The partial eta squared value (η²) greater than 0.06 is considered to have an effect (Cohen, 1988; Müller & Seufert, 2018). Hypothesis testing is carried out after fulfilling the assumption of data normality and homogeneity of variance. Using the Kolmogorov-Smirnov technique, the two data groups (experimental and...
control classes) obtained P-values greater than alpha (see Table 6) and the variances homogeneity test also obtained a P-value greater than alpha (see Table 7). Thus, it can be said that the two groups of data are normally distributed and have the same of variance.

Table 6. – Data normality test.

<table>
<thead>
<tr>
<th>Class</th>
<th>Assignment quality</th>
<th>Statistic</th>
<th>df</th>
<th>Sig.</th>
<th>Procedural learning achievement</th>
<th>Statistic</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental</td>
<td>.120</td>
<td>39</td>
<td>.167</td>
<td>.116</td>
<td>.116</td>
<td>39</td>
<td>.200</td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>.120</td>
<td>39</td>
<td>.166</td>
<td>.106</td>
<td>.106</td>
<td>39</td>
<td>.200</td>
<td></td>
</tr>
</tbody>
</table>

Table 7. – Variance homogeneity test.

<table>
<thead>
<tr>
<th>Data</th>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment quality</td>
<td>.031</td>
<td>1</td>
<td>76</td>
<td>.165</td>
</tr>
<tr>
<td>Procedural learning achievement</td>
<td>.060</td>
<td>1</td>
<td>76</td>
<td>.806</td>
</tr>
</tbody>
</table>

After fulfilling the assumptions of data normality and homogeneity of variance, hypothesis testing was carried out. Effect test results between subjects are shown in Table 8.

Table 8. – Effect test between subjects.

<table>
<thead>
<tr>
<th>Source</th>
<th>Dependent variable</th>
<th>F</th>
<th>Sig.</th>
<th>Partial eta squared</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>Assignment quality</td>
<td>5.892</td>
<td>.018</td>
<td>.072</td>
</tr>
<tr>
<td>Procedural learning achievement</td>
<td>5.956</td>
<td>.017</td>
<td>.073</td>
<td></td>
</tr>
</tbody>
</table>

Based on Table 8, it can be explained that: (a) the significance (P-value) of the effect of scaffolding on task quality is 0.018 and procedural learning achievement is 0.017; (b) the partial eta squar value (η2) scaffolding on task quality is 0.072 and procedural learning achievement is 0.073; (c) both the quality of the assignment and procedural learning achievement have a P-values less than alpha. Based on the acquisition of P-values, it can be said that there are significant differences in the quality of assignments and procedural cognitive learning achievement between the experimental and control classes. This means that the use of scaffolding in the inverted classroom strategy has an effect on the quality of assignments completion and the procedural cognitive learning achievement of students.

Thus, the first and second hypotheses are accepted (Hypothesis # 1: There is the effect of implementing scaffolding on student procedural learn-
The Effect of Scaffolding on Assignment Quality and Procedural Learning Achievement

ing achievement through an inverted classroom strategy; Hypothesis # 2: There is the effect of implementing scaffolding on the quality of student assignments through the inverted classroom strategy). This is reinforced by the partial eta squared values, both the effect of scaffolding on the quality and procedural learning achievement. According to Cohen (1988), Pallant (2005), and Müller & Seufert (2018) the values of partial eta squared (0.072 and 0.073) are in the medium category because they are in the range 0.06 to 0.14.

3. DISCUSSION

3.1. Effect of scaffolding on the assignments quality

Completion of assignments is considered high quality, if students are able to construct knowledge and develop ideas widely and deeply. Based on these criteria, there are significant differences in the quality of assignments completion between experimental and control classes. Experimental class more quality assignments than the control class. The difference is caused by different treatments.

However, descriptively, only a few students (experimental and control classes) were able to complete the assignments with the best score (score 3). The majority of them tried to construct knowledge, but their ideas were very poor, some even did not fit into the themes discussed. The similarity of patterns in completing assignments among students shows the disadvantages of inverted classroom and online learning strategies in general (Gannod et al., 2008; Schlingensiepen, 2014).

Researchers cannot monitor exactly how students complete assignments, especially when they conduct learning activities before and after class. On the one hand, scaffolding can guide students to focus in learning, but on the other hand scaffolding in the form of hints does not guarantee that their learning activities are of high quality. The quality of learning and completion of assignments are not enough to be helped by providing scaffolding in the form of hints. Teachers/lecturers need to provide and use other forms of scaffolding, such as modeling, feedback, instructing, questioning, suggesting, encouraging problems, and reminder to conduct learning activities independently as suggested by Belland (2012), Lu et al. (2010), and Morris et al. (2010), especially for students who have low of self-regulated learning and self-efficacy.
3.2. The effect of scaffolding on procedural cognitive learning achievement

Through statistical tests it was found the effect of scaffolding on procedural cognitive learning achievement. Thus, this study contradicts the research of Molenaar, Boxtel & Sleegers (2011) and provides a solution to the problems found by Thomas & Philpot (2012) and Cruzado & Román (2015). Molenaar et al. (2011) did not find a significant effect of the implementation of scaffolding on student performance, both group and individually. This is suspected due to an incompatibility between the form of scaffolding used with student needs and the type of subject matter (Azevedo & Jacobson, 2008).

Research done by Thomas & Philpot (2012) and Cruzado & Román (2015) revealed that there were no differences in learning achievement between students taught by using inverted classroom and students who were taught by conventional methods. The ineffectiveness of inverted classrooms in the two study groups was because they did not use scaffolding as a learning guide. Inverted classroom implementation, with diverse learning sessions, requires scaffolding, especially for students who do not have learning independence and target procedural skills (Bannert, 2009).

This study supports and reinforces several similar studies. Roschelle et al. (2010) reported that students given scaffolding on the use of wireless handheld technology can solve learning problems better. The indicators of excellence they observe are participation in asking, explaining, and discussing problem solving. Simons & Klein (2007) who conducted study on three groups: groups that were required to be given scaffolding, groups that were given scaffolding options as needed, and groups that were not given scaffolding options, revealed that groups that were required to receive scaffolding obtained higher posttest scores than the other two groups. The study of Azevedo & Jacobson (2008) concluded that the use of scaffolding in the use of hypertext and hypermedia can help foster student learning.

The complexity of competencies that must be mastered by students can increase the cognitive and emotional load for students, especially when they study with google or the internet (Kalyuga, 2009; O’Reilly, 2015; Noteborn & García, 2016; Huang, 2019). Inverted learning allows instructors to deliver more material to students (Mason et al., 2013) because the material is not be delivered in the classroom. Through the use of scaffolding, students are guided to use the internet as as a learning media and learning resource and conduct targeted and quality learning activities. This study found that the use of scaffolding in the form of textual hints can increase the effectiveness of using inverted classroom strategies on procedural learning achievement in the curriculum development courses.
4. CONCLUSIONS AND IMPLICATIONS

Based on the results of the analysis and discussion, this study concludes that there is a significant effect of the use of scaffolding in an inverted classroom strategy on procedural learning achievement and the quality of student assignments. The experimental class shows procedural learning achievement and assignment completion better than the control class. By using scaffolding, students are guided to learn with focus. Learning focus helps them to conduct quality learning activities and obtain optimal learning achievement.

Based on these conclusions, this study implies future research and learning practices. First, Future Study. The lack of influence of the independent variable on the dependent variables in this study gives an imperative for future research to: (a) needs to examine the learning conditions variables, for example self-regulated learning which also influence student learning motivation; it can occur that the experimental class who are taught by using scaffolding have higher self-regulated than the control class, so they can learn better; (b) need to examine the forms of scaffolding needed by students; in this study, researchers only used hints, there are still many other forms of scaffolding that can be used, such as modeling, feedback, encouraging problems, etc.

Second, Learning Practices. Educational institutions (which have integrated internet use in learning) need to use scaffolding based on student needs, because the use of scaffolding forms that are appropriate to the needs of students, can lead them to learn and complete assignments well and achieve optimal learning outcomes.

Acknowledgements

This study was supported by the foundation of the Saint Paul Ruteng (Indonesia) who has funded this study.

References

Ige, O. (2019). Using action learning, concept-mapping, and value clarification to improve students’ attainment in ICT concepts in social studies: The case of
rural learning ecologies. *Journal of Social Studies Education Research, 10*(1), 301-322.

Roschelle, J., Rafanan, K., Bhanot, R., Estrella, G., Penuel, B., Nussbaum, M., & Claro, S. (2010). Scaffolding group explanation and feedback with hand-
https://doi.org/10.1007/s11423-009-9142-9

https://doi.org/10.1016/j.sbspro.2014.05.069

https://doi.org/10.1007/s11251-006-9002-5

https://doi.org/10.1007/s10984-012-9108-4

https://doi.org/10.1016/j.compedu.2015.11.008

https://doi.org/10.33225/pec/19.77.292

https://doi.org/10.1037/0278-7393.15.6.1047

https://doi.org/10.33225/pec/18.76.864
Riassunto

Alcuni problemi riscontrati dagli studenti di oggi quando imparano attraverso la formazione online riguardano la loro capacità di controllo dell’apprendimento, il disorientamento nell’apprendimento e il livello di carico cognitivo esperito. Questo studio si propone di esaminare l’effetto dell’utilizzo di procedure di scaffolding sul raggiungimento dei risultati dell’apprendimento cognitivo procedurale, grazie all’implementazione delle strategie didattiche delle classe capovolta o flipped (IF). Questo studio ha coinvolto gli studenti del corso di studi per docenti in formazione dell’Università cattolica indonesiana di Ruteng. I partecipanti alla ricerca sono stati in totale 78 studenti, ripartiti in gruppo sperimentale e di controllo. Il gruppo sperimentale è stato assistito con procedure di scaffolding, mentre il gruppo di controllo non è stato coinvolto in tali procedure. Il disegno di ricerca ha previsto quindi un confronto tra gruppo di controllo e gruppo sperimentale pre-test / post-test e una raccolta di dati utilizzando alcuni questionari. L’analisi di tali dati è stata condotta mediante analisi multivariata (MANOVA). I risultati hanno mostrato che l’utilizzo di scaffolding aumenta l’efficacia delle strategie didattiche nelle classi capovolta (IF) in merito alla qualità dei risultati dell’apprendimento procedurale. Vengono discusse le implicazioni della presente ricerca sulle pratiche di apprendimento e vengono delineati alcuni possibili sviluppi futuri.

Parole chiave: Apprendimento della procedura; Classe invertita; Qualità dell’apprendimento; Ricerca quantitativa; Scaffolding.