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Abstract
This paper describes a novel algorithm for the unsupervised learning of word separators in raw text. The algorithm 
requires no language-specific knowledge regarding the text being processed. It relies solely on distributional 
properties of the text and uses the minimum description length (MDL) principle in order to partition characters into 
two subsets that correspond well with the traditional notion of letters and separators. The distinction between these 
types of characters emerges as an optimal solution to the problem of simultaneously compressing two elements: 
the lexicon that is obtained by tokenizing the text using the hypothesized separators, and the representation of the 
text under this lexicon. The performance of the proposed algorithm is evaluated on the basis of electronic text in 
English, French and German.
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1. Introduction
Text tokenization is the process by which a finite sequence of characters is converted into 
a sequence of higher-level units, typically words (Webster and Kit, 1992). Although it is a 
necessary step in virtually any form of computerized text analysis, tokenization is not firmly 
established as a proper area of natural language processing. Indeed, it has long been considered 
part of the heterogeneous set of procedures referred to as preprocessing, along with such tasks 
as deleting markup or converting sentence-initial capital letters, for instance.

To some extent, this ancillary status originates in the commonly held belief that tokenization 
is a trivial problem. Indeed, in many written languages, word boundaries are explicitly marked 
by separators, i.e. special characters such as whitespace, carriage return, punctuation marks, 
and so on. In these so-called segmented languages, knowledge of the set of characters that 
may function as separators is sufficient for correctly identifying a large proportion of word 
boundaries, and hence of word tokens 1. However, even in such languages, most separators 
sometimes lose this status, as illustrated by whitespace in multi-word expressions, line-ending 
hyphens, punctuation marks in abbreviations and numbers and so on (see e.g. Mikheev, 2002). 
In other words, tokenization is plagued with the same kind of ambiguities that pervade all 
aspects of natural language processing. 

Besides the mere knowledge of potential separators, tokenizers are often enriched with additional 
information in order to handle ambiguous cases. Such information ranges from contextual rules 
to full-fledged lexicons (Grefenstette and Tapanainen, 1994; Grefenstette, 1999). In general, 

 1 Since the focus of this paper is on discovering word separators, we will not delve into the issues related to the 
tokenization of Asian languages such as Chinese and Japanese, whose written form does not include systematic 
separators (see e.g. Teahan et al., 2000).
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these resources aim at characterizing the conditions under which a separator should rather be 
treated as an ordinary character – or, less frequently, the other way round. These conditions 
are sometimes very general, in the sense that they apply to a lot of texts of different origin; for 
example, many languages share the convention that a period immediately surrounded by digits 
should not be treated as a separator. In other cases, the conditions are specific to a particular 
language, if not to a particular register, genre, field, etc. within a language. Thus, while providing 
a tokenizer with more knowledge usually makes it more accurate, it makes it less general in 
terms of the range of data that it can successfully handle.

Unsupervised approaches to text tokenization take this idea to the extreme. In this framework, 
the main issue is to determine the minimal amount of knowledge that is needed in order to 
tokenize a text. This question is both of practical and scientific relevance. From a practical 
point of view, it is obviously desirable to design tokenization systems that can be applied to 
the broadest possible range of data. Such versatility is particularly important for handling 
noisy data that include a lot of errors and inconsistencies, and for which maintaining updated 
disambiguation resource may not be feasible (Wrenn et al., 2007). From a scientific point of 
view, unsupervised methods for word segmentation are frequently offered as evidence of the 
learnability of certain aspects of lexical knowledge, in particular since the influential work of 
Saffran et al. (1996) on infants’ statistical learning abilities.

Most unsupervised tokenization methods have been designed for processing orthographic or 
phonetic transcriptions which do not include explicit separators–symbolic approximations to 
the continuous stream of spoken language (see e.g. Olivier, 1968; Wolff, 1977; Elman, 1990; 
Brent and Cartwright, 1996; de Marcken, 1996; Bavaud and Xanthos, 2002; Xanthos, 2004). 
However, a few attempts to apply unsupervised tokenization to segmented languages have 
been reported. In some of these studies, the tokenization process does not lead to an explicit 
distinction between separators and other characters. Rather, the resulting tokens are more or less 
consistently decorated with separators at their edges (de Marcken, 1996; Nevill-Manning, 1997, 
Kit and Wilks, 1999). Other studies investigate specific heuristics for identifying separators 
after performing some form of unsupervised tokenization: Hutchens and Alder (1998) propose 
to label as separators those characters whose frequency in token-final position is higher than 
some arbitrary threshold; Wrenn et al. (2007) attempt to remove sentence-ending punctuation 
from the right edge of tokens by inserting new boundaries before characters whose transition 
probability is lower than some threshold. 

To the best of our knowledge, the proposal of Kempe (1999) has been the only attempt to 
identify separators prior to tokenization (based on the assumption that character transitions 
are less predictable when moving from separator to adjacent word than within words). Kempe 
concludes his paper by encouraging the “search for criteria (based on the corpus itself and on 
the obtained result) to evaluate the ‘quality’ of segmentation” (p.12). The present contribution 
is an attempt to provide such a criterion. In particular, we seek to identify separators based on 
their “usefulness” for tokenizing the text. In this context, a character’s usefulness is equated 
with its ability to produce a compact representation of the text when it is added to the set 
of separators. This intuitive notion of usefulness is given a rigorous content on the basis of 
information-theoretic principles, and in particular it is expressed in the specific framework of 
minimum description length (MDL) inference (Rissanen, 1989). We describe a greedy algorithm 
that examines the consequences of labelling each character as a separator and incrementally 
expands the set of separators by selecting the most “useful” one at each stage. The algorithm is 
evaluated on the basis of raw text in English, French and German.
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The rest of this paper is organized as follows. In the next section, we describe the proposed 
algorithm, along with the data and methods used for its evaluation. The evaluation results are 
presented and discussed in section 3. Section 4 summarizes our findings and discusses ways in 
which this line of research can be pursued. 

2. Method

2.1. Learning algorithm

Let T A∗∈  denote the text to be processed, i.e. a finite sequence of characters taken from set 
A. Define ( )AH  as the set of all possible bipartitions of A into a non-empty set of letters 2 
and a possibly empty set of separators (there are | |( ) 2 1AA = −H  such partitions). For a given 
partition ( )h A∈H , we denote by hL  the set of letters in h, and by hL  the set of separators. 
The goal of the proposed algorithm is to select a partition in ( )AH  with no prior information 
regarding the “actual” use of separators in T. This is achieved by means of a model selection 
process based on the minimum description length (MDL) principle (Rissanen, 1989). 

In the MDL framework, T is conceived as an observation which should be explained. It is 
further assumed that the burden of T’s explanation can be shared by two distinct components: 
(i) a model which specifies the (possibly infinite) set of texts that could have been observed in 
place of T and (ii) a representation of T under this model, whose responsability is to uniquely 
identify T among all texts that are compatible with the model. The MDL principle dictates that 
the selection of a model for explaining the data should be based on two criteria: on the one 
hand, the model should be simple, in the sense that it should be possible to specify it with a 
small number of statements; on the other hand, the model should make it possible to describe 
the observed data with a small number of statements.

In general, these two objectives (simplicity of the model and simplicity of the data representation 
under the model) act as contradictory forces in the process of model selection. It is usually 
possible to make the representation of the data very simple by crafting a very complex model, 
which in turn will fail to generalize to unseen data. On the other hand, an excessively simple 
model will place most of the burden of explanation on the data representation, and thus it 
will fail to account for the inherent structure of the observations. The fundamental insight 
of MDL inference is to seek a balanced distribution of information between model and data 
representation by simultaneously minimizing their length.

Putting this program into practice requires the rigorous definition of a coding scheme for each 
possible model and associated data representation. Indeed, such a scheme is needed in order 
to obtain a quantitative evaluation of the cumulated length of these two elements – which we 
attempt to minimize. Obviously, this evaluation depends crucially on the choice of a particular 
coding scheme. In order to reduce this lurking arbitrariness, it is desirable to design the coding 
scheme in such fashion that the length of the encoded model and data representation is as 
strongly compressed as possible, and in particular as close as possible to the minimal bounds 
set by information and coding theory.

 2 For the sake of readability, the term letters is used to refer to all characters that are assumed not to function as 
word separators (whether alphabetic, numeric, or other).
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The detailed presentation of this approach (as applied to the problem of text tokenization) 
proceeds in three steps. First we describe a set of conventions which, given a text T A∗∈ , uniquely 
associate each partition ( )h A∈H  to a probabilistic model (essentially a pair of lexicons) and 
a representation of T under this model (which can be thought of as a series of instructions for 
generating T on the basis of the lexicons). Then we define a way of compactly encoding each 
possible pair of model and data representation in binary format, and derive an expression of the 
length of the resulting binary string. Finally we present a greedy algorithm which attempts to 
find the partition ( )h A∈H  minimizing the cumulated length of the corresponding model and 
data representation (in compressed binary format). 

2.1.1. Partition, model, and data representation

Given text T A∗∈ , each partition ( )h A∈H  into letters hL  and separators hL  can be associated 
with a unique segmentation of T into a series of words, i.e. contiguous sequences of letters 
in *( )hL , in strict alternation with separator words, i.e. contiguous sequences of separators 
in *( )hL . Based on this segmentation, it is straightforward to establish a list of distinct words 

hW  and a list of distinct separator words hW . In what follows, we will call hW  the lexicon 
(associated to h), and hW  the corresponding separator lexicon.

The pair : ( , )h h hM W W=  can be thought of as a model which generates T A∗∈ , along with 
other texts. To that effect, we make the following assumptions:

1. Generation starts by choosing one of the two lexicons in hM  at random. This lexicon 
becomes the current lexicon. 

2. A word or separator word in the current lexicon is randomly emitted.
3. If hW  has already been the current lexicon once, generation has a random chance of stopping.

Otherwise it proceeds by switching the current lexicon and returns to step 2. 

This process generates an infinite set of texts, which form a subset of all possible texts on A. The 
difference between this subset and *A  is the knowledge about T that is encoded in hM .

In order to uniquely identify T among all texts that can be generated by hM , some extra 
information is needed. This information can be expressed as a series of instructions for hM  to 
generate T. By analogy with what precedes, we assume that it consists of:

1. A bit indicating whether to start with a word or separator word.
2. A sequence of h hn n+  integers corresponding to each of the hn  word tokens and hn  separator 

word tokens in T, as segmented under h. Each integer is the index of an element of hW  (or 
hW ), and the lexicon is assumed to switch at each step. 

These data form the representation of T under hM , or simply under h. We write it 
0 1: ( , , , )h h

h h h h
n n

T t t t
+

=  , where 0 {0,1}ht ∈  and 1 , , h h
h h

n n
t t

+
  are positive integers.

Taken together, hT  and hM  give a full account of T A∗∈ . They encode it in a way that can 
be uniquely decoded–under the assumptions described in this section. These assumptions are 
obviously arbitrary, but there is no way of using a code without sharing certains assumptions 
between encoder and decoder. The main point is that each partition ( )h A∈H  can be 
conventionally associated with a unique model hM  and data representation hT , and these 
constitute a full specification of T A∗∈ .
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2.1.2. Coding scheme and compressed length

Following the minimum description length (MDL) principle, the aim of the proposed algorithm 
is to find the partition 0 ( )h A∈H  which minimizes the cumulated length of the corresponding 
model 

0hM  and data representation 
0hT . However, as mentioned earlier, length evaluation 

depends on the specific way in which models and data representations are encoded. So it would 
seem that this is by no means an objective criteria for selecting a partition. 

Information theory provides us with a way of dealing with this issue. In this framework, it has 
been established that a message can be encoded in a way that is optimal, in the sense that its 
length is as small as possible (under certain constraints). Thus, rather than simply minimizing 
the length of models and data representations as expressed in any arbitrary code, it is desirable 
to minimize their compressed length as expressed in an optimal code. Note that we are not 
interested in actually encoding models and data representations: our aim is merely to evaluate 
their compressed length. Therefore we will use certain results in information theory without 
worrying about how to effectively construct codes with the desired properties.

In what follows, we introduce a coding scheme which translates each possible pair ( , )h hM T  
into a unique binary string in *{0,1} . This string can be decoded unambiguously provided that 
the coding scheme is known. The scheme takes advantage of the redundancies in ( , )h hM T  and 
provides a computable approximation of the compressed length of ( , )h hM T . 

Formally, a code is a function mapping every item in a given set to a code-word in a second set. 
In the MDL framework, it is both customary and convenient to use codes whose code-words are 
binary strings in *{0,1} . Codes are also traditionally required to be instantaneous, in the sense 
that it should always be possible to tell that an entire code-word has been read before reading 
the message any further. This condition is also known as the prefix-free property, because it is 
satisfied if and only if no code-word is the prefix of another code-word.

Suppose that C is a prefix-free code mapping the elements of some set B to binary strings. 
Consider a sequence *{0,1}s∈  of code-words in this code. Since C is prefix-free, there is no 
need for code-words in s to be explicitly separated; the decoder always knows when an entire 
code-word has been read. Suppose now that s is the beginning of a longer binary string, and that 
the rest of this string is encoded with some other code C’, possibly using the same binary strings 
as code-words. In such a case, how does the decoder know when to switch to the new code?

This problem can be solved by prepending s with a prefix-free binary code-word (in yet 
another code) which stands for the number n of code-words in s. Thus, after reading this initial 
code-word, the decoder knows how many code-words must be read using prefix-free code 
C before switching to C’. This can be thought of as the consolidation of s into a list of n 
items, and the added length of the initial code-word is the cost for specifying the list structure 
(see e.g. Goldsmith, 2001). There exists a number of prefix-free codes which associate each 
integer n with a compact binary code-word; the one we will use has code-words of length 

( )( ) : log( 1) 2 log log( 1) 1 1n n nλ = + + + + +       bits (see e.g. Li and Vitányi, 1997) 3.

The proposed coding scheme makes extensive use of this notion of list structure. We will also 
draw on the following theorem: given a finite set of items with probabilities 1, , mp p , 
there exists an optimal prefix-free binary code which has an expected code-word length (in 

 3 The notation log denotes the base 2 logarithm and x    stands for the largest integer not greater than x.



1128 UNSUPERVISED LEARNING OF WORD SEPARATORS WITH MDL

JADT 2010: 10 th International Conference on Statistical Analysis of Textual Data

bits) approximately equal to the entropy ( )1, , : logm i i iH p p p p= −Σ  over the probability 
distribution (Shannon, 1948). This code is optimal because it assigns the shortest code-words 
to the most frequent items.

For the sake of explanation, suppose that we wish to encode a message consisting in a pair 
( , )h hM T  where 1: { , , }h

mM w w=   is a single lexicon and 
1: ( , , )h

nT t t= 

 is a series of integers 
corresponding to indices of words in hM  (that is, {1, , }kt m∈   for 1 k n≤ ≤ ). Consider first the
question of encoding hT . By Shannon’s theorem, we know that there is a code which associates 
each integer in {1, , }m  with a binary code-word of approximate expected length ( )1, , mH p p  
bits, where ip  is the probability of i (as estimated by its relative frequency in hT ). Thus the 
compressed length of hT  can be evaluated as ( )1( ) : ( ) , ,h

mL T n nH p pλ= +   bits, where ( )nλ  is 
the cost of consolidating the sequence into a list of code-words. 

The encoding of hM  is slightly more complicated. As a first approximation, we may assume 
that each word h

iw M∈  is a sequence of ( )il w  characters, and each character is encoded in 8 
bits (as in the ASCII code, for instance). Thus the representation of word iw  is a sequence of 
8 ( )il w  bits. In general, the set of all such sequences is not prefix-free, since there may be words 
which are the prefix of other words. In order to encode the sequence corresponding to iw  in a 
prefix-free fashion, we turn it into a list of characters using the method described earlier. With 
this convention, we may encode iw  with a prefix-free code-word of length ( )( ) 8 ( )i il w l wλ +  
bits. The compressed length of hM  is evaluated as the sum, over all words, of the length of the 
corresponding code-word, plus the cost of specifying that hM  is a list of m elements:

 ( )( ) : ( ) ( ) 8 ( )h
i ii

L M m l w l wλ λ= + +  ∑  (1)

The total size compressed size of ( , )h hM T  is then simply calculated as ( ) ( )h hL M L T+ .

This first scheme efficiently compresses the redundancies in hT , but it fails to compress those 
in hM . A better scheme may be designed by replacing the 8-bit string corresponding to each 
character in the lexicon with a binary code-word in an optimal prefix-free code. Let A denote 
the set of l distinct characters in words of hM . Based on Shannon’s theorem, we know that 
there exists an optimal prefix-free code which associates each integer in {1, , }l  with a binary 
code-word of approximate expected length ( )1, , lH q q , where rq  stand for the probability 
of r (as estimated by the relative frequency of the r-th character of A in hM ). This makes 
it possible to compress the representation of each word in hM  from ( )( ) 8 ( )i il w l wλ +  to  
( ) ( )1( ) ( ) , ,i i ll w l w H q qλ +   bits:

 ( ) ( )1( ) : ( ) ( ) ( ) , ,h
i i li

L M m l w l w H q qλ λ= + +  ∑   (2)

With this new convention, it is in principle necessary to transmit the ordered list of characters 
types (in 8-bit or other encoding) even before transmitting the lexicon itself. However, since 
this list is constant over all pairs ( , )h hM T  4, its compressed length contributes a constant term 
to the overall compressed length of ( , )h hM T ; therefore it has no influence on the selection of 
a pair ( , )h hM T  and will be ignored in the computation.

 4 Recall from previous section that the set of characters depends only on the text T that is being tokenized.
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We may eventually return to the original question, i.e. how to evaluate the compressed length 
of the pair ( , )h hM T  associated with a partition ( )h A∈H , given text T A∗∈ . The following 
formulas take into account the fact that hM  actually consists of two lexicons (words hW  
separator words hW ), each of which is based on a separate set of characters (letters hL  and 
separators hL ). We assume that ( , )h hM T  is encoded as a single binary string containing the 
two lexicons followed by the representation of the data under the model, and each of these 
three components is encapsulated in a list structure. Putting the bits together and using all 
assumptions stated previously, the compressed length of ( , )h hM T  is finally evaluated as:

 

( )

( )

11

11

1 1

( , ) : ( ) ( )

( ) : ( ( )) ( ) , ,

( ( )) ( ) , ,

( ) : 1 ( ) , , ( ) , ,

h

h

h

h

h h

h h h h

Wh h h h h h
i ii L

Wh h h h h
i ii L

h h h h h h h h h
W W

L M T L M L T

L M W l w l w H q q

W l w l w H q q

L T n n H p p n n H p p

λ λ

λ λ

λ λ

=

=

= +

  = + +     
  + + +     
   = + + + +   
   

∑

∑





 

 (3)

where:
• h

rq  and h
rq ′  denote the probability of the r-th letter in hL  and r’-th separator in hL  respectively, 

estimated by their relative frequency in hW  and hW .
• h

ip  and h
ip ′  denote the probability of the i-th word in hW  and i’-th separator word in hW  

estimated by their relative frequency in hT .
• h

iw  and h
iw ′  denote the i-th word in hW  and i’-th separator word in hW .

• hn  and hn  denote the number of word tokens and separator word tokens in hT .

2.1.3. Search procedure

Given text T A∗∈ , we apply the following greedy algorithm in order to search for the partition 
0 ( )h A∈H  which minimizes the compressed length 

0 0

( , )h hL M T  as defined in formula (3):

1. The algorithm first evaluates the compressed length of the partition in which the set of 
letters hL  is the whole set of characters in A, and the set of separators hL  is empty. This 
partition becomes the current partition.

2. We construct each partition resulting from turning a single letter in the current partition to a 
separator. The compressed length of each modified partition is computed.

3. If none of the modified partitions leads to a decrease in compressed length (or if 1hL = ), 
the algorithm returns the current partition and stops. 

4. Otherwise the modified partition that has minimal compressed length becomes the current 
partition and the algorithm returns to step 2.

This very simple procedure is not guaranteed to find the partition that globally minimizes 
compressed length, but it is guaranteed to find a local minimum in less than | |A  iterations.

2.2. Evaluation

2.2.1. Data

The performance of the proposed algorithm is evaluated on the basis of three texts in three 
languages: English (Aaberg, 1945), French (d’Abbadie, 1868) and German (Abbe, 1989). Each 
text was downloaded from Project Gutenberg website (http://www.gutenberg.org), and was 

http://www.gutenberg.org
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selected by retrieving the first author in each language (in alphabetical order). All texts are in 
ISO-8859-1 encoding and are submitted to the algorithm without any form of preprocessing 5. 
Tab. 1 summarizes their main properties (WS stands for whitespace and CR for carriage return).

Language # characters Non alphanumeric characters
 Types Tokens

English 87 346’779 WS CR . , : ; ? ! - ‘ ( ) [ ] “ $ % @ # * _ /
French 109 1’061’657 WS CR . , : ; ? ! - ‘ ( ) [ ] “ $ % @ # * _ / « » °
German 107 966’055 WS CR . , : ; ? ! - ‘ ( ) [ ] “ $ % @ # * _ / « » { } < > + = & · | § \ ~

Table 1: Main properties of texts in the test set

It is worth noting that besides language variation, this corpus displays considerable genre 
variation. For instance, the German text contains ASCII-formatted tables which contribute to 
the relatively large diversity of non-alphanumeric characters in this text, which in turn is likely 
to affect the results of the algorithm. 

2.2.2. Evaluation metrics

There are various ways of assessing the performance of a tokenization method (see Habert et 
al., 1998 for a discussion). In this study, we perform a boundary-based comparison between 
the segmentation associated with the partition selected by the learning algorithm and the 
segmentation associated with a reference partition. By convention, the reference is taken to be 
the partition hα  in which all alphanumeric characters belong to the set of letters and all other 
characters to the set of separators.

Given text T A∗∈ , reference partition hα , and a hypothesized partition ( )h A∈H , the evaluation 
process examines each potential boundary in T (i.e. each pair of consecutive characters c and 
c’). At each step, we increment (i) the count of true boundaries whenever c is a letter and c’ 
is a separator (or the other way round) in hα ; (ii) the count of positive boundaries whenever 
c is a letter and c’ is a separator (or the other way round) in h; (iii) the count of true positives 
whenever c is a letter in both partitions and c’ is a separator in both partitions (or the other way 
round). Precision is then calculated as the ratio of true positives to positive boundaries, and 
recall as the ratio of true positives to true boundaries.

Precision and recall are computed at each iteration of the algorithm described in section 2.1.3 
above, when a new letter is moved to the set of separators. The result is a series of precision-
recall pairs that document the performance of the algorithm throughout the process of separator 
learning. The curve for each text in our test set is reported in the next section.

3. Results
Figures 1 to 3 represent the evaluation results for each language. On each figure, the horizontal 
axis displays the 20 first separators that have been discovered by the algorithm in chronological 
order (WS stands for whitespace and CR for carriage return). Besides precision and recall, the 
compression rate obtained by adding each successive separator is also displayed (based on the 
compressed length evaluation defined in section 2.1.2.).

 5 In particular, each text retains its standard Project Gutenberg header and footer in English.
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Figure 1: Evaluation results for English data

Figure 2: Evaluation results for French data

Figure 3: Evaluation results for German data

Learning dynamics display striking similarities in the three texts. In particular, the first four 
separators that the algorithm discovers are the same: WS, CR, comma and period. In each 
language, they are learned in the same order and yield approximately the same compression 
rate. WS and CR are the only separators which entail a large compression rate (about .2 and .15 
respectively), and the rate falls below .01 after 6 or 7 separators (although it remains positive 
for another 20 to 30 separators). 

Precision is greater that .9 after learning whitespace, and it does not change much when learning 
carriage return. At this point, the difference to unity can be explained by the fact that WS and CR 
are very useful for detecting left word boundaries (in these languages), but less so for right word 
boundaries. Indeed, there are often intervening separators, such as punctuation marks, between 
right boundaries and WS or CR. This interpretation is confirmed by the fact that comma and 
period are the next separators to be learned and their discovery leads to a considerable increase 
in precision (about .05). 

The next separators to be learned include other punctuation marks (colon, semi-colon and, 
in the English and French texts, exclamation and question mark), along with hyphen and 
underscore. Paired separators such as guillemets, parentheses and square brackets follow closely 
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(in particular in French and German). After a dozen separators have been learned, the compression 
rate is less than or equal to .001, and while the algorithm keeps finding new separators, their 
impact on precision and recall becomes hardly noticeable. At this point, the metrics are very 
close to their values at the end of the learning process, reported in Tab. 2 (except for precision 
in the German text, which keeps increasing slowly but steadily until the end).

Language Precision Recall Separators selected by the algorithm

English 0.997 0.991 WS CR , . “ ; - : ! ? _ ] [ X / 7 0 6 4 ( ) 9 @ $ % #
French 1 0.941 WS CR , . ; : - ! _ ? « ( ) » [ / 1 À 9 6 8 0 2 5 3 ] 4 7 “ @ $ # % °
German 1 1 WS CR , . _ : ; - » « * | ] [ ) ( ? ! = ~ / § } < > “ % { @ # ‘ · $ \

Table 2: Precision, recall and separator set at the end of the learning process

The first obviously erroneous separators are capital ‘X’ in the English text (15th separator) and 
capital ‘À’ in the French text (19th separator). The former has only 13 occurrences, out of which 10 
are in roman numerals; in this context, ‘X’ appear only in word-initial or -final position, and therefore 
it constitutes a good candidate for inclusion in the set of separators. There are 137 occurrences of 
‘À’ in the French text, all of which are in the single letter preposition À. Since ‘À’ never occurs 
word-internally, adding it to the set of separators does not lead to the incorrect segmentation 
of other words (as adding most other letters would). On the other hand, it makes it possible to 
reduce a number of [ separator word + À + separator word ] sequences into a single separator 
word, which is the most likely explanation for the observed decrease in compression length.

In the English and French text, the algorithm labels part or all of digits as separators. This is a 
clear divergence to the reference partition adopted for this experiment, but it must be recalled 
that letters (in the traditional sense) and digits tend to form separate tokens in the languages of 
our sample. From that point of view, classifying digits with letters rather than with separators 
was a debatable decision in the first place. A better solution would be to upgrade the model in 
order to account for three or more character classes. Note that in the German text, where the 
number of occurrences of digit sequences (2’739) is much larger than in the English and French 
text (358 and 403 respectively), digits have not been classified as separators.

Finally, while recall increases throughout the learning process and reaches very high values, 
there are a few separators that the algorithm fails to retrieve: apostrophe and asterisk in English 
and French; ampersand and plus sign in German. With the exception of the apostrophe, these 
are all rare characters which are used in rather specific contexts, and their misclassification 
has little influence on recall. The case of the apostrophe is more problematic, especially in the 
French text, where it is quite frequent (10’320 occurrences, versus 429 in the English text and 
9 in the German text). Failure to classify the apostrophe as a separator accounts for most of the 
6% of true boundaries that the algorithm does not retrieve in the French text.  

4. Conclusion
In this paper, we have described a novel algorithm for the unsupervised learning of word 
separators in text. The algorithm requires no prior knowledge regarding the text to be processed. 
Following the minimum description length (MDL) principle, it attempts to find an optimal 
partition of characters into letters and separators. Each partition is conventionally associated 
with a model (i.e. a pair of lexicons) and a representation of the text under this model, and 
the partition’s optimality is evaluated on the basis of the conciseness of the associated model 
and data representation. Information and coding theory provide useful tools for reducing 



 ARIS XANTHOS, FRANÇOIS BAVAUD 1133

JADT 2010: 10 th International Conference on Statistical Analysis of Textual Data

arbitrariness in the assessment of conciseness. The search for an optimal partition is done by 
means of a greedy algorithm which gradually expands the set of separators until there is no 
(direct) way to further compress the model and data representation.

Experiments conducted on English, French and German text show that the proposed algorithm 
is very efficient at learning word separators from these data. The most significant problem 
encountered–and arguably the only one–is the algorithm’s failure to classify the apostrophe as a 
separator, which in the case of the French text reduces the boundary-based recall by more than 5 
percents. There is also some variation across languages as regards the classification of digits as 
letters or separators. This suggests that a model with more than two classes of characters might 
be more appropriate.

The most important limitation of this approach is that it classifies character types into letters and
separators–rather than character tokens. As discussed in the introduction, most separators can 
lose this status in certain contexts, and this is not accounted for by the present algorithm. In 
further research, we intend to investigate the possibility of applying MDL inference to the 
problem of learning contextual rules for disambiguating the function of separators in texts (such 
a rule might state that a period should not be treated as a separator when it is surrounded by 
digits, for instance).

Beyond the particular case of text tokenization, our aim in this paper has been to illustrate the 
use of MDL inference for solving a moderately complex problem of textual data analysis. We 
believe that this approach to unsupervised learning has the potential to be useful for a wide 
array of problems in natural language processing, and the present case-study is offered as an 
attempt to foster this line of research. 
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