
JADT 2010 : 10 th International Conference on Statistical Analysis of Textual Data

Unsupervised learning of word separators with MDL

Aris Xanthos, François Bavaud

University of Lausanne – CH-1015 Lausanne – Suisse

Abstract
This paper describes a novel algorithm for the unsupervised learning of word separators in raw text. The algorithm
requires no language-specific knowledge regarding the text being processed. It relies solely on distributional
properties of the text and uses the minimum description length (MDL) principle in order to partition characters into
two subsets that correspond well with the traditional notion of letters and separators. The distinction between these
types of characters emerges as an optimal solution to the problem of simultaneously compressing two elements:
the lexicon that is obtained by tokenizing the text using the hypothesized separators, and the representation of the
text under this lexicon. The performance of the proposed algorithm is evaluated on the basis of electronic text in
English, French and German.

Keywords: unsupervised learning, word separators, tokenization, minimum description length.

1. Introduction
Text tokenization is the process by which a finite sequence of characters is converted into
a sequence of higher-level units, typically words (Webster and Kit, 1992). Although it is a
necessary step in virtually any form of computerized text analysis, tokenization is not firmly
established as a proper area of natural language processing. Indeed, it has long been considered
part of the heterogeneous set of procedures referred to as preprocessing, along with such tasks
as deleting markup or converting sentence-initial capital letters, for instance.

To some extent, this ancillary status originates in the commonly held belief that tokenization
is a trivial problem. Indeed, in many written languages, word boundaries are explicitly marked
by separators, i.e. special characters such as whitespace, carriage return, punctuation marks,
and so on. In these so-called segmented languages, knowledge of the set of characters that
may function as separators is sufficient for correctly identifying a large proportion of word
boundaries, and hence of word tokens 1. However, even in such languages, most separators
sometimes lose this status, as illustrated by whitespace in multi-word expressions, line-ending
hyphens, punctuation marks in abbreviations and numbers and so on (see e.g. Mikheev, 2002).
In other words, tokenization is plagued with the same kind of ambiguities that pervade all
aspects of natural language processing.

Besides the mere knowledge of potential separators, tokenizers are often enriched with additional
information in order to handle ambiguous cases. Such information ranges from contextual rules
to full-fledged lexicons (Grefenstette and Tapanainen, 1994; Grefenstette, 1999). In general,

 1 Since the focus of this paper is on discovering word separators, we will not delve into the issues related to the
tokenization of Asian languages such as Chinese and Japanese, whose written form does not include systematic
separators (see e.g. Teahan et al., 2000).

www.ledonline.it/ledonline/jadt-2010.html

1124 UNSUPERVISED LEARNING OF WORD SEPARATORS WITH MDL

JADT 2010: 10 th International Conference on Statistical Analysis of Textual Data

these resources aim at characterizing the conditions under which a separator should rather be
treated as an ordinary character – or, less frequently, the other way round. These conditions
are sometimes very general, in the sense that they apply to a lot of texts of different origin; for
example, many languages share the convention that a period immediately surrounded by digits
should not be treated as a separator. In other cases, the conditions are specific to a particular
language, if not to a particular register, genre, field, etc. within a language. Thus, while providing
a tokenizer with more knowledge usually makes it more accurate, it makes it less general in
terms of the range of data that it can successfully handle.

Unsupervised approaches to text tokenization take this idea to the extreme. In this framework,
the main issue is to determine the minimal amount of knowledge that is needed in order to
tokenize a text. This question is both of practical and scientific relevance. From a practical
point of view, it is obviously desirable to design tokenization systems that can be applied to
the broadest possible range of data. Such versatility is particularly important for handling
noisy data that include a lot of errors and inconsistencies, and for which maintaining updated
disambiguation resource may not be feasible (Wrenn et al., 2007). From a scientific point of
view, unsupervised methods for word segmentation are frequently offered as evidence of the
learnability of certain aspects of lexical knowledge, in particular since the influential work of
Saffran et al. (1996) on infants’ statistical learning abilities.

Most unsupervised tokenization methods have been designed for processing orthographic or
phonetic transcriptions which do not include explicit separators–symbolic approximations to
the continuous stream of spoken language (see e.g. Olivier, 1968; Wolff, 1977; Elman, 1990;
Brent and Cartwright, 1996; de Marcken, 1996; Bavaud and Xanthos, 2002; Xanthos, 2004).
However, a few attempts to apply unsupervised tokenization to segmented languages have
been reported. In some of these studies, the tokenization process does not lead to an explicit
distinction between separators and other characters. Rather, the resulting tokens are more or less
consistently decorated with separators at their edges (de Marcken, 1996; Nevill-Manning, 1997,
Kit and Wilks, 1999). Other studies investigate specific heuristics for identifying separators
after performing some form of unsupervised tokenization: Hutchens and Alder (1998) propose
to label as separators those characters whose frequency in token-final position is higher than
some arbitrary threshold; Wrenn et al. (2007) attempt to remove sentence-ending punctuation
from the right edge of tokens by inserting new boundaries before characters whose transition
probability is lower than some threshold.

To the best of our knowledge, the proposal of Kempe (1999) has been the only attempt to
identify separators prior to tokenization (based on the assumption that character transitions
are less predictable when moving from separator to adjacent word than within words). Kempe
concludes his paper by encouraging the “search for criteria (based on the corpus itself and on
the obtained result) to evaluate the ‘quality’ of segmentation” (p.12). The present contribution
is an attempt to provide such a criterion. In particular, we seek to identify separators based on
their “usefulness” for tokenizing the text. In this context, a character’s usefulness is equated
with its ability to produce a compact representation of the text when it is added to the set
of separators. This intuitive notion of usefulness is given a rigorous content on the basis of
information-theoretic principles, and in particular it is expressed in the specific framework of
minimum description length (MDL) inference (Rissanen, 1989). We describe a greedy algorithm
that examines the consequences of labelling each character as a separator and incrementally
expands the set of separators by selecting the most “useful” one at each stage. The algorithm is
evaluated on the basis of raw text in English, French and German.

 ARIS XANTHOS, FRANÇOIS BAVAUD 1125

JADT 2010: 10 th International Conference on Statistical Analysis of Textual Data

The rest of this paper is organized as follows. In the next section, we describe the proposed
algorithm, along with the data and methods used for its evaluation. The evaluation results are
presented and discussed in section 3. Section 4 summarizes our findings and discusses ways in
which this line of research can be pursued.

2. Method

2.1. Learning algorithm

Let T A∗∈ denote the text to be processed, i.e. a finite sequence of characters taken from set
A. Define ()AH as the set of all possible bipartitions of A into a non-empty set of letters 2
and a possibly empty set of separators (there are | |() 2 1AA = −H such partitions). For a given
partition ()h A∈H , we denote by hL the set of letters in h, and by hL the set of separators.
The goal of the proposed algorithm is to select a partition in ()AH with no prior information
regarding the “actual” use of separators in T. This is achieved by means of a model selection
process based on the minimum description length (MDL) principle (Rissanen, 1989).

In the MDL framework, T is conceived as an observation which should be explained. It is
further assumed that the burden of T’s explanation can be shared by two distinct components:
(i) a model which specifies the (possibly infinite) set of texts that could have been observed in
place of T and (ii) a representation of T under this model, whose responsability is to uniquely
identify T among all texts that are compatible with the model. The MDL principle dictates that
the selection of a model for explaining the data should be based on two criteria: on the one
hand, the model should be simple, in the sense that it should be possible to specify it with a
small number of statements; on the other hand, the model should make it possible to describe
the observed data with a small number of statements.

In general, these two objectives (simplicity of the model and simplicity of the data representation
under the model) act as contradictory forces in the process of model selection. It is usually
possible to make the representation of the data very simple by crafting a very complex model,
which in turn will fail to generalize to unseen data. On the other hand, an excessively simple
model will place most of the burden of explanation on the data representation, and thus it
will fail to account for the inherent structure of the observations. The fundamental insight
of MDL inference is to seek a balanced distribution of information between model and data
representation by simultaneously minimizing their length.

Putting this program into practice requires the rigorous definition of a coding scheme for each
possible model and associated data representation. Indeed, such a scheme is needed in order
to obtain a quantitative evaluation of the cumulated length of these two elements – which we
attempt to minimize. Obviously, this evaluation depends crucially on the choice of a particular
coding scheme. In order to reduce this lurking arbitrariness, it is desirable to design the coding
scheme in such fashion that the length of the encoded model and data representation is as
strongly compressed as possible, and in particular as close as possible to the minimal bounds
set by information and coding theory.

 2 For the sake of readability, the term letters is used to refer to all characters that are assumed not to function as
word separators (whether alphabetic, numeric, or other).

1126 UNSUPERVISED LEARNING OF WORD SEPARATORS WITH MDL

JADT 2010: 10 th International Conference on Statistical Analysis of Textual Data

The detailed presentation of this approach (as applied to the problem of text tokenization)
proceeds in three steps. First we describe a set of conventions which, given a text T A∗∈ , uniquely
associate each partition ()h A∈H to a probabilistic model (essentially a pair of lexicons) and
a representation of T under this model (which can be thought of as a series of instructions for
generating T on the basis of the lexicons). Then we define a way of compactly encoding each
possible pair of model and data representation in binary format, and derive an expression of the
length of the resulting binary string. Finally we present a greedy algorithm which attempts to
find the partition ()h A∈H minimizing the cumulated length of the corresponding model and
data representation (in compressed binary format).

2.1.1. Partition, model, and data representation

Given text T A∗∈ , each partition ()h A∈H into letters hL and separators hL can be associated
with a unique segmentation of T into a series of words, i.e. contiguous sequences of letters
in *()hL , in strict alternation with separator words, i.e. contiguous sequences of separators
in *()hL . Based on this segmentation, it is straightforward to establish a list of distinct words

hW and a list of distinct separator words hW . In what follows, we will call hW the lexicon
(associated to h), and hW the corresponding separator lexicon.

The pair : (,)h h hM W W= can be thought of as a model which generates T A∗∈ , along with
other texts. To that effect, we make the following assumptions:

1. Generation starts by choosing one of the two lexicons in hM at random. This lexicon
becomes the current lexicon.

2. A word or separator word in the current lexicon is randomly emitted.
3. If hW has already been the current lexicon once, generation has a random chance of stopping.

Otherwise it proceeds by switching the current lexicon and returns to step 2.

This process generates an infinite set of texts, which form a subset of all possible texts on A. The
difference between this subset and *A is the knowledge about T that is encoded in hM .

In order to uniquely identify T among all texts that can be generated by hM , some extra
information is needed. This information can be expressed as a series of instructions for hM to
generate T. By analogy with what precedes, we assume that it consists of:

1. A bit indicating whether to start with a word or separator word.
2. A sequence of h hn n+ integers corresponding to each of the hn word tokens and hn separator

word tokens in T, as segmented under h. Each integer is the index of an element of hW (or
hW), and the lexicon is assumed to switch at each step.

These data form the representation of T under hM , or simply under h. We write it
0 1: (, , ,)h h

h h h h
n n

T t t t
+

=  , where 0 {0,1}ht ∈ and 1 , , h h
h h

n n
t t

+
 are positive integers.

Taken together, hT and hM give a full account of T A∗∈ . They encode it in a way that can
be uniquely decoded–under the assumptions described in this section. These assumptions are
obviously arbitrary, but there is no way of using a code without sharing certains assumptions
between encoder and decoder. The main point is that each partition ()h A∈H can be
conventionally associated with a unique model hM and data representation hT , and these
constitute a full specification of T A∗∈ .

 ARIS XANTHOS, FRANÇOIS BAVAUD 1127

JADT 2010: 10 th International Conference on Statistical Analysis of Textual Data

2.1.2. Coding scheme and compressed length

Following the minimum description length (MDL) principle, the aim of the proposed algorithm
is to find the partition 0 ()h A∈H which minimizes the cumulated length of the corresponding
model

0hM and data representation
0hT . However, as mentioned earlier, length evaluation

depends on the specific way in which models and data representations are encoded. So it would
seem that this is by no means an objective criteria for selecting a partition.

Information theory provides us with a way of dealing with this issue. In this framework, it has
been established that a message can be encoded in a way that is optimal, in the sense that its
length is as small as possible (under certain constraints). Thus, rather than simply minimizing
the length of models and data representations as expressed in any arbitrary code, it is desirable
to minimize their compressed length as expressed in an optimal code. Note that we are not
interested in actually encoding models and data representations: our aim is merely to evaluate
their compressed length. Therefore we will use certain results in information theory without
worrying about how to effectively construct codes with the desired properties.

In what follows, we introduce a coding scheme which translates each possible pair (,)h hM T
into a unique binary string in *{0,1} . This string can be decoded unambiguously provided that
the coding scheme is known. The scheme takes advantage of the redundancies in (,)h hM T and
provides a computable approximation of the compressed length of (,)h hM T .

Formally, a code is a function mapping every item in a given set to a code-word in a second set.
In the MDL framework, it is both customary and convenient to use codes whose code-words are
binary strings in *{0,1} . Codes are also traditionally required to be instantaneous, in the sense
that it should always be possible to tell that an entire code-word has been read before reading
the message any further. This condition is also known as the prefix-free property, because it is
satisfied if and only if no code-word is the prefix of another code-word.

Suppose that C is a prefix-free code mapping the elements of some set B to binary strings.
Consider a sequence *{0,1}s∈ of code-words in this code. Since C is prefix-free, there is no
need for code-words in s to be explicitly separated; the decoder always knows when an entire
code-word has been read. Suppose now that s is the beginning of a longer binary string, and that
the rest of this string is encoded with some other code C’, possibly using the same binary strings
as code-words. In such a case, how does the decoder know when to switch to the new code?

This problem can be solved by prepending s with a prefix-free binary code-word (in yet
another code) which stands for the number n of code-words in s. Thus, after reading this initial
code-word, the decoder knows how many code-words must be read using prefix-free code
C before switching to C’. This can be thought of as the consolidation of s into a list of n
items, and the added length of the initial code-word is the cost for specifying the list structure
(see e.g. Goldsmith, 2001). There exists a number of prefix-free codes which associate each
integer n with a compact binary code-word; the one we will use has code-words of length

()() : log(1) 2 log log(1) 1 1n n nλ = + + + + +      bits (see e.g. Li and Vitányi, 1997) 3.

The proposed coding scheme makes extensive use of this notion of list structure. We will also
draw on the following theorem: given a finite set of items with probabilities 1, , mp p ,
there exists an optimal prefix-free binary code which has an expected code-word length (in

 3 The notation log denotes the base 2 logarithm and x   stands for the largest integer not greater than x.

1128 UNSUPERVISED LEARNING OF WORD SEPARATORS WITH MDL

JADT 2010: 10 th International Conference on Statistical Analysis of Textual Data

bits) approximately equal to the entropy ()1, , : logm i i iH p p p p= −Σ over the probability
distribution (Shannon, 1948). This code is optimal because it assigns the shortest code-words
to the most frequent items.

For the sake of explanation, suppose that we wish to encode a message consisting in a pair
(,)h hM T where 1: { , , }h

mM w w=  is a single lexicon and
1: (, ,)h

nT t t= 

 is a series of integers
corresponding to indices of words in hM (that is, {1, , }kt m∈  for 1 k n≤ ≤). Consider first the
question of encoding hT . By Shannon’s theorem, we know that there is a code which associates
each integer in {1, , }m with a binary code-word of approximate expected length ()1, , mH p p
bits, where ip is the probability of i (as estimated by its relative frequency in hT). Thus the
compressed length of hT can be evaluated as ()1() : () , ,h

mL T n nH p pλ= +  bits, where ()nλ is
the cost of consolidating the sequence into a list of code-words.

The encoding of hM is slightly more complicated. As a first approximation, we may assume
that each word h

iw M∈ is a sequence of ()il w characters, and each character is encoded in 8
bits (as in the ASCII code, for instance). Thus the representation of word iw is a sequence of
8 ()il w bits. In general, the set of all such sequences is not prefix-free, since there may be words
which are the prefix of other words. In order to encode the sequence corresponding to iw in a
prefix-free fashion, we turn it into a list of characters using the method described earlier. With
this convention, we may encode iw with a prefix-free code-word of length ()() 8 ()i il w l wλ +
bits. The compressed length of hM is evaluated as the sum, over all words, of the length of the
corresponding code-word, plus the cost of specifying that hM is a list of m elements:

 ()() : () () 8 ()h
i ii

L M m l w l wλ λ= + +  ∑ (1)

The total size compressed size of (,)h hM T is then simply calculated as () ()h hL M L T+ .

This first scheme efficiently compresses the redundancies in hT , but it fails to compress those
in hM . A better scheme may be designed by replacing the 8-bit string corresponding to each
character in the lexicon with a binary code-word in an optimal prefix-free code. Let A denote
the set of l distinct characters in words of hM . Based on Shannon’s theorem, we know that
there exists an optimal prefix-free code which associates each integer in {1, , }l with a binary
code-word of approximate expected length ()1, , lH q q , where rq stand for the probability
of r (as estimated by the relative frequency of the r-th character of A in hM). This makes
it possible to compress the representation of each word in hM from ()() 8 ()i il w l wλ + to
() ()1() () , ,i i ll w l w H q qλ +  bits:

 () ()1() : () () () , ,h
i i li

L M m l w l w H q qλ λ= + +  ∑  (2)

With this new convention, it is in principle necessary to transmit the ordered list of characters
types (in 8-bit or other encoding) even before transmitting the lexicon itself. However, since
this list is constant over all pairs (,)h hM T 4, its compressed length contributes a constant term
to the overall compressed length of (,)h hM T ; therefore it has no influence on the selection of
a pair (,)h hM T and will be ignored in the computation.

 4 Recall from previous section that the set of characters depends only on the text T that is being tokenized.

 ARIS XANTHOS, FRANÇOIS BAVAUD 1129

JADT 2010: 10 th International Conference on Statistical Analysis of Textual Data

We may eventually return to the original question, i.e. how to evaluate the compressed length
of the pair (,)h hM T associated with a partition ()h A∈H , given text T A∗∈ . The following
formulas take into account the fact that hM actually consists of two lexicons (words hW
separator words hW), each of which is based on a separate set of characters (letters hL and
separators hL). We assume that (,)h hM T is encoded as a single binary string containing the
two lexicons followed by the representation of the data under the model, and each of these
three components is encapsulated in a list structure. Putting the bits together and using all
assumptions stated previously, the compressed length of (,)h hM T is finally evaluated as:

()

()

11

11

1 1

(,) : () ()

() : (()) () , ,

(()) () , ,

() : 1 () , , () , ,

h

h

h

h

h h

h h h h

Wh h h h h h
i ii L

Wh h h h h
i ii L

h h h h h h h h h
W W

L M T L M L T

L M W l w l w H q q

W l w l w H q q

L T n n H p p n n H p p

λ λ

λ λ

λ λ

=

=

= +

  = + +     
  + + +     
   = + + + +   
   

∑

∑





 

 (3)

where:
• h

rq and h
rq ′ denote the probability of the r-th letter in hL and r’-th separator in hL respectively,

estimated by their relative frequency in hW and hW .
• h

ip and h
ip ′ denote the probability of the i-th word in hW and i’-th separator word in hW

estimated by their relative frequency in hT .
• h

iw and h
iw ′ denote the i-th word in hW and i’-th separator word in hW .

• hn and hn denote the number of word tokens and separator word tokens in hT .

2.1.3. Search procedure

Given text T A∗∈ , we apply the following greedy algorithm in order to search for the partition
0 ()h A∈H which minimizes the compressed length

0 0

(,)h hL M T as defined in formula (3):

1. The algorithm first evaluates the compressed length of the partition in which the set of
letters hL is the whole set of characters in A, and the set of separators hL is empty. This
partition becomes the current partition.

2. We construct each partition resulting from turning a single letter in the current partition to a
separator. The compressed length of each modified partition is computed.

3. If none of the modified partitions leads to a decrease in compressed length (or if 1hL =),
the algorithm returns the current partition and stops.

4. Otherwise the modified partition that has minimal compressed length becomes the current
partition and the algorithm returns to step 2.

This very simple procedure is not guaranteed to find the partition that globally minimizes
compressed length, but it is guaranteed to find a local minimum in less than | |A iterations.

2.2. Evaluation

2.2.1. Data

The performance of the proposed algorithm is evaluated on the basis of three texts in three
languages: English (Aaberg, 1945), French (d’Abbadie, 1868) and German (Abbe, 1989). Each
text was downloaded from Project Gutenberg website (http://www.gutenberg.org), and was

http://www.gutenberg.org

1130 UNSUPERVISED LEARNING OF WORD SEPARATORS WITH MDL

JADT 2010: 10 th International Conference on Statistical Analysis of Textual Data

selected by retrieving the first author in each language (in alphabetical order). All texts are in
ISO-8859-1 encoding and are submitted to the algorithm without any form of preprocessing 5.
Tab. 1 summarizes their main properties (WS stands for whitespace and CR for carriage return).

Language # characters Non alphanumeric characters
 Types Tokens

English 87 346’779 WS CR . , : ; ? ! - ‘ () [] “ $ % @ # * _ /
French 109 1’061’657 WS CR . , : ; ? ! - ‘ () [] “ $ % @ # * _ / « » °
German 107 966’055 WS CR . , : ; ? ! - ‘ () [] “ $ % @ # * _ / « » { } < > + = & · | § \ ~

Table 1: Main properties of texts in the test set

It is worth noting that besides language variation, this corpus displays considerable genre
variation. For instance, the German text contains ASCII-formatted tables which contribute to
the relatively large diversity of non-alphanumeric characters in this text, which in turn is likely
to affect the results of the algorithm.

2.2.2. Evaluation metrics

There are various ways of assessing the performance of a tokenization method (see Habert et
al., 1998 for a discussion). In this study, we perform a boundary-based comparison between
the segmentation associated with the partition selected by the learning algorithm and the
segmentation associated with a reference partition. By convention, the reference is taken to be
the partition hα in which all alphanumeric characters belong to the set of letters and all other
characters to the set of separators.

Given text T A∗∈ , reference partition hα , and a hypothesized partition ()h A∈H , the evaluation
process examines each potential boundary in T (i.e. each pair of consecutive characters c and
c’). At each step, we increment (i) the count of true boundaries whenever c is a letter and c’
is a separator (or the other way round) in hα ; (ii) the count of positive boundaries whenever
c is a letter and c’ is a separator (or the other way round) in h; (iii) the count of true positives
whenever c is a letter in both partitions and c’ is a separator in both partitions (or the other way
round). Precision is then calculated as the ratio of true positives to positive boundaries, and
recall as the ratio of true positives to true boundaries.

Precision and recall are computed at each iteration of the algorithm described in section 2.1.3
above, when a new letter is moved to the set of separators. The result is a series of precision-
recall pairs that document the performance of the algorithm throughout the process of separator
learning. The curve for each text in our test set is reported in the next section.

3. Results
Figures 1 to 3 represent the evaluation results for each language. On each figure, the horizontal
axis displays the 20 first separators that have been discovered by the algorithm in chronological
order (WS stands for whitespace and CR for carriage return). Besides precision and recall, the
compression rate obtained by adding each successive separator is also displayed (based on the
compressed length evaluation defined in section 2.1.2.).

 5 In particular, each text retains its standard Project Gutenberg header and footer in English.

 ARIS XANTHOS, FRANÇOIS BAVAUD 1131

JADT 2010: 10 th International Conference on Statistical Analysis of Textual Data

Figure 1: Evaluation results for English data

Figure 2: Evaluation results for French data

Figure 3: Evaluation results for German data

Learning dynamics display striking similarities in the three texts. In particular, the first four
separators that the algorithm discovers are the same: WS, CR, comma and period. In each
language, they are learned in the same order and yield approximately the same compression
rate. WS and CR are the only separators which entail a large compression rate (about .2 and .15
respectively), and the rate falls below .01 after 6 or 7 separators (although it remains positive
for another 20 to 30 separators).

Precision is greater that .9 after learning whitespace, and it does not change much when learning
carriage return. At this point, the difference to unity can be explained by the fact that WS and CR
are very useful for detecting left word boundaries (in these languages), but less so for right word
boundaries. Indeed, there are often intervening separators, such as punctuation marks, between
right boundaries and WS or CR. This interpretation is confirmed by the fact that comma and
period are the next separators to be learned and their discovery leads to a considerable increase
in precision (about .05).

The next separators to be learned include other punctuation marks (colon, semi-colon and,
in the English and French texts, exclamation and question mark), along with hyphen and
underscore. Paired separators such as guillemets, parentheses and square brackets follow closely

1132 UNSUPERVISED LEARNING OF WORD SEPARATORS WITH MDL

JADT 2010: 10 th International Conference on Statistical Analysis of Textual Data

(in particular in French and German). After a dozen separators have been learned, the compression
rate is less than or equal to .001, and while the algorithm keeps finding new separators, their
impact on precision and recall becomes hardly noticeable. At this point, the metrics are very
close to their values at the end of the learning process, reported in Tab. 2 (except for precision
in the German text, which keeps increasing slowly but steadily until the end).

Language Precision Recall Separators selected by the algorithm

English 0.997 0.991 WS CR , . “ ; - : ! ? _] [X / 7 0 6 4 () 9 @ $ % #
French 1 0.941 WS CR , . ; : - ! _ ? « () » [/ 1 À 9 6 8 0 2 5 3] 4 7 “ @ $ # % °
German 1 1 WS CR , . _ : ; - » « * |] [) (? ! = ~ / § } < > “ % { @ # ‘ · $ \

Table 2: Precision, recall and separator set at the end of the learning process

The first obviously erroneous separators are capital ‘X’ in the English text (15th separator) and
capital ‘À’ in the French text (19th separator). The former has only 13 occurrences, out of which 10
are in roman numerals; in this context, ‘X’ appear only in word-initial or -final position, and therefore
it constitutes a good candidate for inclusion in the set of separators. There are 137 occurrences of
‘À’ in the French text, all of which are in the single letter preposition À. Since ‘À’ never occurs
word-internally, adding it to the set of separators does not lead to the incorrect segmentation
of other words (as adding most other letters would). On the other hand, it makes it possible to
reduce a number of [separator word + À + separator word] sequences into a single separator
word, which is the most likely explanation for the observed decrease in compression length.

In the English and French text, the algorithm labels part or all of digits as separators. This is a
clear divergence to the reference partition adopted for this experiment, but it must be recalled
that letters (in the traditional sense) and digits tend to form separate tokens in the languages of
our sample. From that point of view, classifying digits with letters rather than with separators
was a debatable decision in the first place. A better solution would be to upgrade the model in
order to account for three or more character classes. Note that in the German text, where the
number of occurrences of digit sequences (2’739) is much larger than in the English and French
text (358 and 403 respectively), digits have not been classified as separators.

Finally, while recall increases throughout the learning process and reaches very high values,
there are a few separators that the algorithm fails to retrieve: apostrophe and asterisk in English
and French; ampersand and plus sign in German. With the exception of the apostrophe, these
are all rare characters which are used in rather specific contexts, and their misclassification
has little influence on recall. The case of the apostrophe is more problematic, especially in the
French text, where it is quite frequent (10’320 occurrences, versus 429 in the English text and
9 in the German text). Failure to classify the apostrophe as a separator accounts for most of the
6% of true boundaries that the algorithm does not retrieve in the French text.

4. Conclusion
In this paper, we have described a novel algorithm for the unsupervised learning of word
separators in text. The algorithm requires no prior knowledge regarding the text to be processed.
Following the minimum description length (MDL) principle, it attempts to find an optimal
partition of characters into letters and separators. Each partition is conventionally associated
with a model (i.e. a pair of lexicons) and a representation of the text under this model, and
the partition’s optimality is evaluated on the basis of the conciseness of the associated model
and data representation. Information and coding theory provide useful tools for reducing

 ARIS XANTHOS, FRANÇOIS BAVAUD 1133

JADT 2010: 10 th International Conference on Statistical Analysis of Textual Data

arbitrariness in the assessment of conciseness. The search for an optimal partition is done by
means of a greedy algorithm which gradually expands the set of separators until there is no
(direct) way to further compress the model and data representation.

Experiments conducted on English, French and German text show that the proposed algorithm
is very efficient at learning word separators from these data. The most significant problem
encountered–and arguably the only one–is the algorithm’s failure to classify the apostrophe as a
separator, which in the case of the French text reduces the boundary-based recall by more than 5
percents. There is also some variation across languages as regards the classification of digits as
letters or separators. This suggests that a model with more than two classes of characters might
be more appropriate.

The most important limitation of this approach is that it classifies character types into letters and
separators–rather than character tokens. As discussed in the introduction, most separators can
lose this status in certain contexts, and this is not accounted for by the present algorithm. In
further research, we intend to investigate the possibility of applying MDL inference to the
problem of learning contextual rules for disambiguating the function of separators in texts (such
a rule might state that a period should not be treated as a separator when it is surrounded by
digits, for instance).

Beyond the particular case of text tokenization, our aim in this paper has been to illustrate the
use of MDL inference for solving a moderately complex problem of textual data analysis. We
believe that this approach to unsupervised learning has the potential to be useful for a wide
array of problems in natural language processing, and the present case-study is offered as an
attempt to foster this line of research.

References
Aaberg J.C. (1945). Hymns and Hymnwriters of Denmark. Des Moines (IA): Committee on Publication

of the Danish Evangelical Lutheran Church in America. Retrieved October 30, 2009, from Project
Gutenberg: http://www.gutenberg.org/etext/29666.

d’Abbadie A. (1868). Douze ans de séjour dans la Haute-Éthiopie, tome premier. Paris: Librairie de L.
Hachette et Cie. Retrieved October 30, 2009, from Project Gutenberg:

 http://www.gutenberg.org/ etext/18812.
Abbe E. (1989). Gesammelte Abhandlungen III. Hildesheim: Georg Olms Verlag. Retrieved October

30, 2009, from Project Gutenberg: http://www.gutenberg.org/etext/19755.
Bavaud F. and Xanthos A. (2002). Thermodynamique et statistique textuelle: concepts et illustrations.

In Actes de JADT 2002, vol. 2, Saint-Malo, 13-15 marzo, pp. 101-111.
Brent M.R. and Cartwright T.A. (1996). Distributional regularity and phonological constraints are use-

ful for segmentation. Cognition, 61: 93-125.
Elman J.L. (1990). Finding Structure in Time. Cognitive Science, 14: 179-211.
Gammon E. (1969). Quantitative approximations to the word. In Proc. of COLING-69 (3rd International

Conference on Computational Linguistics), Sång-Säby, 01-04 settembre.
Goldsmith J.A. (2001). Unsupervised learning of the morphology of a natural language. Computational

Linguistics, 27(2), 153-198.
Grefenstette G. (1999). Tokenization. In Van Halteren, H., editor, Syntactic Wordclass Tagging,

Dordrecht: Kluwer Academic Publishers, pp. 117-133.
Grefenstette G. and Tapanainen P. (1994). What is word, what is a sentence? Problems of text

http://www.gutenberg.org/etext/29666
http://www.gutenberg.org/ etext/18812
http://www.gutenberg.org/etext/19755

1134 UNSUPERVISED LEARNING OF WORD SEPARATORS WITH MDL

JADT 2010: 10 th International Conference on Statistical Analysis of Textual Data

tokenization. Proc. of 3rd Conference on Computational Lexicography and Text Research
(COMPLEX’94), pp. 79-87.

Habert B., Adda G., Adda-Decker M., de Marëuil P.B., Ferrari S., Ferret O., Illouz G. and Paroubek
P. (1998). Towards tokenization evaluation. In Rubio, A., Gallardo, N., Castro, R., Tejada, A.,
editors, Proc. of First International Conference on Language Resources and Evaluation,
volume I, pp. 427-431.

Harris Z.S. (1955). From phoneme to morpheme. Language, 31: 190-222.
Hutchens J. and Alder M. (1998). Finding structure via compression. In Proc. of CoNLL-98 (2nd

International Conference on Computational Natural Language Learning), pp. 79-82.
Kempe A. (1999). Experiments in unsupervised entropy-based corpus segmentation. In Proc. of

CoNLL-99 (3nd International Conference on Computational Natural Language Learning),
pp. 7-13.

Kit C. and Wilks Y. (1999). Unsupervised learning of word boundary with description length gain.
In Proc. of CoNLL-99 (3nd International Conference on Computational Natural Language
Learning), pp. 1-6.

Li M. and Vitányi P. (1997). An Introduction to Kolmogorov Complexity and Its Applications (2nd
edition). New York: Springer-Verlag.

de Marcken C.G. (1996). Unsupervised Language Acquisition. Unpublished doctoral dissertation,
Massachusetts Institute of Technology.

Mikheev A. (2002). Text Segmentation. In Mitkov, R., editor, The Oxford Handbook of Computational
Linguistics, Oxford: Oxford University Press, pp. 201-218.

Nevill-Manning C.G. and Witten I.H. (1997). Identifying hierarchical structure in sequences: A linear-
time algorithm. Journal of Artificial Intelligence Research, 7: 67-82.

Olivier D.C. (1968). Stochastic Grammars and Language Acquisition Mechanisms. Unpublished
doctoral dissertation, Harvard University.

Rissanen J. (1989). Stochastic Complexity in Statistical Inquiry. Singapore: World Scientific Publishing
Co.

Saffran J.R., Aslin, R.N. and Newport, E.L. (1996). Statistical learning by 8-month old infants. Science,
274: 1926-1928.

Shannon C.E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27:
379-423 and 623-656.

Teahan W.J., Wen Y., McNab R.J. and Witten I.H. (2000). A compression-based algorithm for Chinese
word segmentation. Computational Linguistics, 26(3): 375-393.

Webster J.J. and Kit C. (1992). Tokenization as the initial phase in NLP. In Proc. of COLING-92 (14th
International Conference on Computational Linguistics), pp. 1106-1110.

Wolff J.G. (1977). The discovery of segments in natural language. British Journal of Psychology, 68:
97-106.

Wrenn J.O., Stetson P.D. and Johnson S.B. (2007). An unsupervised machine learning approach to seg-
mentation of clinician-entered free text. In Proc. of AMIA Annual Symposium 2007, pp. 811-815.

Xanthos A. (2003), Du k-gramme au mot: variation sur un thème distributionnaliste. In Bulletin de
linguistique et des sciences du langage (BIL), 21.

Xanthos A. (2004). Combining utterance-boundary and predictability approaches to speech
segmentation. In Proc. of the Psycho-computational Models of Language Acquisition Workshop
at COLING 2004, pp. 93-100.

