Contents
2. Alex Drummond. The ban on rightward P-stranding is a global constraint.
4. Jacopo Romoli. Presupposition wipe-out can’t be all or nothing: a note on conflicting presuppositions.
7. Michelle Sheehan. A note on case assignment to CP.
There are two main approaches to ‘donkey’ sentences such as (1). Dynamic theories argue that pronouns have the semantics of variables, but that existential quantifiers can bind outside of their c-command domain. E-type theories argue instead that pronouns have the semantics of definite descriptions, with it ≈ the donkey that the farmer owns (e.g. Heim 1990) or just the donkey (Elbourne 2005). Such accounts require adoption of an event or situation semantics, but no revision of the standard notion of scope.

(2) poses well-known difficulties for E-type theories. Since the two antecedents play semantically symmetric roles, it is difficult to get he and him to refer to distinct individuals (note that the bishop that meets a bishop and the bishop that a bishop meets are synonymous). Dynamic theories have no such difficulty: each existential quantifier simply binds a separate pronoun.

(1) A farmer owns a donkey. He beats it.
(2) [A bishop], met [a bishop]. He, blessed him.

We will show that dynamic approaches are faced with a similar ‘bishop’ problem in minimally different examples such as (3). The source of the difficulty is that numerals give rise to maximal readings, as shown in (4).

(3) At least two bishops will(each) meet at least two bishops. They will each bless them.
(4) (Tomorrow,) I will meet at least two bishops. They will bless me.

=> All bishops that I meet (tomorrow) will bless me.

Dynamic theories have resorted to two strategies to capture the maximality condition. Both backfire with (3):

[1] First, at least two could be treated as a generalized quantifier in the framework of Kamp and Reyle 1993 (they also give a ‘cardinal quantifier’ treatment, similar to the second theory we discuss below). They posit an ‘abstraction’ operation which makes it possible for the pronoun they to be interpreted as the sum of bishops that I will meet (= \[\Sigma x: x \text{ bishop} & I \text{ will-meet x} \]). When this strategy is applied to (3), it yields the analysis in (6).

(5) [at least two bishops], I will-meet x. [\Sigma x: x \text{ bishop} & I \text{ will-meet x}] will-bless me.
(6) [at least two bishops], [at least two bishops], x will-meet y. [\Sigma x: x \text{ bishop} & [at least two bishops], x meet y] each, will-bless [\Sigma y: y \text{ bishop} & x \text{ meet y}]

Kamp and Reyle do not discuss the case in which abstraction produces an expression with a free variable, as happens with the object pronoun (in bold; by contrast, in the
underlined expression corresponding to the subject pronoun, Kamp and Reyle’s abstraction procedure produces an expression with no free variable). Here we have opted to bind the variable with a distributive operator each. But our argument can be given for any plausible resolution of the object pronoun: the problem already arises with the subject pronoun.

Consider the situation in (7). Meetings, which are symmetric, are here represented as dotted lines; blessings, which are asymmetric, are represented with arrows.

\[
\begin{array}{cc}
\text{(7)} & \text{b}_1 \quad \text{b}_2 \\
& \text{b}_3 \quad \text{b}_4
\end{array}
\]

Intuitively, (7) makes (3) true, with they denoting \{b_1, b_2\} and them denoting \{b_3, b_4\}. But the analysis in (6) predicts (3) to be false in (7): they must denote all the bishops who each met at least two bishops, i.e. \{b_1, b_2, b_3, b_4\}. But with this denotation, the second sentence of (3) is predicted to be false, since it is false that each of these individuals did some blessing (b_3 and b_4 didn’t).

[2] Now consider van den Berg’s analysis (1994) (it is rather close in this case to Kamp and Reyle’s ‘cardinal quantifier’ analysis p. 458). (8a) is analyzed as in (8b), with the truth conditions in (8c) (\& is a dynamic existential quantifier and \(M_x\) is a maximality operator; \(\geq 2(x', x)\) means that at least two elements of \(x'\) are in \(x\)).

\(\begin{align*}
(8) & \quad \text{a. } [\geq 2 y: \text{bishops } y] \text{ I will-meet } y \\
& \quad \text{b. } \varepsilon y \land \varepsilon y' \land M_y (\text{bishops } y') \land M_y (y \subseteq y' \land \text{I will-meet } y) \land \geq 2 (y', y) \\
& \quad \text{c. There is a set } y, \text{ and there is a set } y', \text{ and } y' \text{ is a maximal set of bishops, and } y \text{ is a maximal subset of } y' \text{ whose members I will meet, and there are at least two members of } y' \text{ that are in } y.
\end{align*}\)

Interpreting all predicates as distributive, (3) receives the analysis in (9) (for legibility, we leave the underlined part unanalyzed).

\(\begin{align*}
(9) & \quad \text{a. } [\geq 2 x: \text{bishops } x] [\geq 2 y: \text{bishops } y] \text{ (x will-meet } y). \text{ x blessed } y. \\
& \quad \text{b. } \varepsilon x \land \varepsilon x' \land M_x (\text{bishops } x') \land M_x (x \subseteq x' \land [\geq 2 y: \text{bishops } y] (x \text{ will-meet } y)) \\
& \quad \quad \land \geq 2 (x', x) \\
& \quad \quad \land \varepsilon y \land \varepsilon y' \land M_y (\text{bishops } y') \land M_y (y \subseteq y' \land x \text{ will-meet } y') \land \geq 2 (y', y) \\
& \quad \quad \land x \text{ will-bless } y
\end{align*}\)

Without fully simplifying these truth conditions, it is enough to observe that the constraint on \(x\) which appears in bold guarantees that its denotation should include all of \{b_1, b_2, b_3, b_4\}: by treating the underlined part in the same way as in (8) (replacing \(I\) with \(x'\)), we end up with a requirement that \(x\) denote the maximal set of bishops who (each) met at least two bishops, i.e. \{b_1, b_2, b_3, b_4\}. With this denotation, \(x\ will\ bless\ y\) cannot be satisfied in (7).
In fact, plausible truth conditions can be obtained, but at the cost of separating the existential quantifiers $\exists x$ and $\exists y$ (boxed below) from their maximality conditions, as in (10a), which can be simplified to (10b) (because y' plays the same role as x'):

(10) a. $\exists x \land \exists y \land [\exists a \land M_a (bishops x') \land M_e (x \subseteq x' \land x \text{ will-meet } y) \land \geq 2(x', x)] \land [\exists b \land M_b (bishops y') \land M_e (y \subseteq y' \land y \text{ will-meet } y) \land \geq 2(y', y)] \land x \text{ will-bless } y$

b. $\exists x \land \exists y \land [\exists a \land M_a (bishops x') \land M_e (x \subseteq x' \land x \text{ will-meet } y) \land \geq 2(x', x)] \land [\exists b \land M_b (y \subseteq x' \land y \text{ will-meet } y) \land \geq 2(x', y)] \land x \text{ will-bless } y$

c. There is a set x, and there is a set y, and [there is a set x' which is the maximal set of bishops, and x is the maximal subset of x' which meets y, and there are at least two members of x' that are in x], and [there is a set y' which x will meet, and there are at least two members of y' that are in y], and x will bless y.

The separation between existential force and maximality might be surprising; but it is also used in Sher’s (1991) analysis of branching readings of generalized quantifiers.

References