Contents

1. Andreea C. Nicolae, Patrick D. Elliott, and Yasutada Sudo
 Introduction ... [1]
2. Dorothy Ahn
 ASL IX to locus as a modifier .. [2]
3. Artemis Alexiadou
 Decomposing scalar approximatives in Greek [4]
4. Anna Alsop, Lucas Champollion, and Ioana Grosu
 A problem for Fox’s (2007) account of free choice disjunction [7]
5. Anton Benz and Nicole Gotzner
 Quantifier irgendein and local implicature [10]
6. Jonathan David Bobaljik and Susi Wurmbrand
 Fake indexicals, binding, and the PCC [13]
7. Brian Buccola and Emmanuel Chemla
 Alternatives of disjunctions: when a disjunct contains the antecedent of a pronoun ... [16]
8. Luka Crnić and Brian Buccola
 Scoping NPIs out of DPs .. [19]
9. Chris Cummins
 Some contexts requiring precise number meanings [22]
10. Patrick D. Elliott and Paul Marty
 Exactly one theory of multiplicity inferences [24]
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
</table>
|11| Anamaria Fălăuș and Andreea C. Nicolae
Two coordinating particles are better than one: free choice items in Romanian | 27 |
|12| Danny Fox
Individual concepts and narrow scope illusions | 30 |
|13| Danny Fox
Degree concepts and narrow scope illusions | 33 |
|14| Nicole Gotzner
Disjunction, conjunction, and exhaustivity | 35 |
|15| Martin Hackl
On Haddock’s puzzle and the role of presupposition in reference resolution | 37 |
|16| Andreas Haida
Symmetry, density, and formal alternatives | 40 |
|17| Nina Haslinger and Viola Schmitt
Strengthened disjunction or non-classical conjunction? | 43 |
|18| Fabian Heck and Anke Himmelreich
Two observations about reconstruction | 46 |
|19| Aron Hirsch
Modal adverbs and constraints on type-flexibility | 49 |
|20| Natalia Ivlieva and Alexander Podobryaev
On variable agreement and scope reconstruction in Russian | 52 |
|21| Hadil Karawani
The past is rewritten | 54 |
|22| Manfred Krifka and Fereshteh Modarresi
Persian ezafe and proportional quantifiers | 56 |
|23| Paul Marty
Maximize Presupposition! and presupposition satisfaction | 59 |
|24| Lisa Matthewson, Sihwei Chen, Marianne Huijsmans, Marcin Morzycki, Daniel Reisinger, and Hotze Rullmann
Restricting the English past tense | 61 |
|25| Clemens Mayr
On a seemingly nonexistent cumulative reading | 65 |
|26| Marie-Christine Meyer
Scalar Implicatures in complex contexts | 67 |
|27| Moreno Mitrović
Null disjunction in disguise | 70 |
|28| Andreea C. Nicolae and Yasutada Sudo
The exhaustive relevance of complex conjunctions | 72 |
|29| Rick Nouwen
Scalar vagueness regulation and locative reference | 75 |
<table>
<thead>
<tr>
<th>No.</th>
<th>Author</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Robert Pasternak</td>
<td>Unifying partitive and adjective-modifying percent</td>
<td>77</td>
</tr>
<tr>
<td>31</td>
<td>Hazel Pearson and Frank Sode</td>
<td>‘Not in my wildest dreams’: a part time minimizer?</td>
<td>80</td>
</tr>
<tr>
<td>32</td>
<td>Orin Percus</td>
<td>Uli and our generation: some reminiscences</td>
<td>82</td>
</tr>
<tr>
<td>33</td>
<td>Jacopo Romoli</td>
<td>Why them?</td>
<td>84</td>
</tr>
<tr>
<td>34</td>
<td>Fabienne Salfner</td>
<td>The rise and fall of non-conservatives</td>
<td>87</td>
</tr>
<tr>
<td>35</td>
<td>Petra B. Schumacher</td>
<td>Vagueness and context-sensitivity of absolute gradable adjectives</td>
<td>90</td>
</tr>
<tr>
<td>36</td>
<td>Stephanie Solt</td>
<td>More or less an approximator</td>
<td>93</td>
</tr>
<tr>
<td>37</td>
<td>Giorgos Spathas</td>
<td>Plural anaphoric reference and non-conservativity</td>
<td>95</td>
</tr>
<tr>
<td>38</td>
<td>Benjamin Spector</td>
<td>An argument for the trivalent approach to presupposition projection</td>
<td>97</td>
</tr>
<tr>
<td>39</td>
<td>Bob van Tiel</td>
<td>‘The case against fuzzy logic revisited’ revisited</td>
<td>100</td>
</tr>
<tr>
<td>40</td>
<td>Lyn Tieu</td>
<td>A developmental asymmetry between the singular and plural</td>
<td>103</td>
</tr>
<tr>
<td>41</td>
<td>Tue Trinh</td>
<td>A tense question</td>
<td>106</td>
</tr>
<tr>
<td>42</td>
<td>Hubert Truckenbrodt</td>
<td>On remind-me presuppositions and embedded question acts</td>
<td>108</td>
</tr>
<tr>
<td>43</td>
<td>Michael Wagner</td>
<td>Disjuncts must be mutually excludable</td>
<td>111</td>
</tr>
<tr>
<td>44</td>
<td>E. Cameron Wilson</td>
<td>Constraints on non-conservative readings in English</td>
<td>114</td>
</tr>
<tr>
<td>45</td>
<td>Susi Wurmbrand</td>
<td>Indexical shift meets ECM</td>
<td>117</td>
</tr>
</tbody>
</table>
Exactly one theory of multiplicity inferences

Patrick D. Elliott · Leibniz-Zentrum Allgemeine Sprachwissenschaft
Paul Marty · Leibniz-Zentrum Allgemeine Sprachwissenschaft

DOI: http://dx.doi.org/10.7358/snip-2019-037-elma

Spector (2007) observes that an utterance of (1) gives rise to the inferences in (1a) and (1b), in which the plural nominal difficult problems is interpreted exclusively and inclusively respectively.

(1) Exactly one of my students has solved difficult problems.
 a. One of my students has solved more than one difficult problem
 b. None of my other students have solved one or more difficult problems

To explain this, Spector proposes that the literal meaning of (1) is inclusive, but is pragmatically strengthened relative to (2).

(2) EXH (Exactly one of my students has solved a difficult problem)

The meaning of (2), in turn, is derived by conjoining the (inclusive) meaning of the prejacent of EXH with the negation of its alternative. Spector assumes that a NP has several NPs as its alternative. As a result, (2) is equivalent to (3).

(3) One of my students solved one difficult problem, and no other student solved any difficult problem.

As the reader can verify, conjoining the literal meaning of (1) with the negation of (2) (i.e., the negation of (3)) entails both (1a) and (1b).

Spector’s account relies on unprincipled assumptions concerning formal alternatives: the unexhaustified singular form in (2) must be an alternative to (1), and as noted, the singular form must have an alternative with several. Crucially, however, the plural cannot have an alternative with several, otherwise the multiplicity inference would not be derived. In other words, alternativehood, for Spector, must be non-transitive.

We propose a different account that does away with these assumptions. In line with Spector (2007), we adopt the view that the exclusive interpretation of the plural is an implicature. For concreteness, we follow Mayr’s (2015) account, framed in terms of predicate-level exhaustification: singular NPs, which range over atoms, are scalar alternatives to plural NPs, which range over atoms and groups. Applying EXH to a plural NP yields a multiplicity implicature by winnowing out the atoms (4).

(4) A student has solved EXH [difficult problems]
 ⇒ a student has solved more than one difficult problem

Second, we draw on Sauerland’s (2013:159) analysis of exactly as a focus sensitive expression: much like only, exactly takes a proposition p that contains a focused element (i.e., a numeral) and returns that (i) p is true, and (ii) for every q ∈ ALT(p) that is not entailed by p, ¬q is true. This is illustrated in (5).
(5) Exactly/Only \([\text{ONE}_F \text{ student came to the meeting}]\)
 a. one student came to the meeting
 b. \(\neg[n \text{ students came to the meeting}], \text{ for any numeral } n > \text{one}\)

Third, we rely on previous findings (e.g., Gajewski and Sharvit 2012; Alxatib 2014; Bar-Lev 2018) showing that, in the scope of expressions like only, implicatures are generated in the upward-entailing (UE) component (e.g., in the prejacent), yet disappear in the downward-entailing (DE) component (e.g., in the negated alternatives). We illustrate this for exactly/only below, using the not-all implicature associated with some.

(6) Exactly/Only \([\text{ONE}_F \text{ student ate some of the cookies}]\)
 a. UE component: implicature
 \(\text{one student ate some } \text{but not all} \text{ of the cookies}\)
 b. DE component: no implicature
 \(\neg[n \text{ students ate some of the cookies}], \text{ for any numeral } n > \text{one}\)

We propose that the case in (1) is another instance of the above phenomenon: a multiplicity implicature is generated in the UE-prejacent of exactly, delivering (1a), but not in its DE-alternatives, hence (1b). The intuition here is that EXH can be rendered vacuous in these DE-alternatives as its working would otherwise weaken their meaning (7). This should ultimately follow from the Economy condition constraining the distribution of EXH (a.o., Fox and Spector 2018).

(7) Exactly \([\text{ONE}_F \text{ student solved EXH } [\text{difficult problems}]\])
 a. one student solved EXH \([\text{difficult problems}]\)
 \(\Rightarrow\) one student solved \(\text{more than one}\) difficult problems
 b. \(\neg[n \text{ student solved EXH } [\text{difficult problems}]\], \text{ for any numeral } n > \text{one}\)
 \(\Rightarrow\) none of the other students have solved \(\text{one or more}\) difficult problems

To close, our account relies on decomposing an apparently non-monotonic operator into a UE and a DE component. Hence, we predict that if a non-monotonic operator cannot be analyzed in this way, the implicatures should be distinct.

References

Patrick Elliott
elliott@leibniz-zas.de
Leibniz-Zentrum Allgemeine Sprachwissenschaft (ZAS)
Schützenstr. 18
D-10117 Berlin
Germany

Paul Marty
marty@leibniz-zas.de
Leibniz-Zentrum Allgemeine Sprachwissenschaft (ZAS)
Schützenstr. 18
D-10117 Berlin
Germany