Contents

1. Andreea C. Nicolae, Patrick D. Elliott, and Yasutada Sudo
 Introduction ... [1]

2. Dorothy Ahn
 ASL IX to locus as a modifier ... [2]

3. Artemis Alexiadou
 Decomposing scalar approximatives in Greek [4]

4. Anna Alsop, Lucas Champollion, and Ioana Grosu
 A problem for Fox’s (2007) account of free choice disjunction [7]

5. Anton Benz and Nicole Gotzner
 Quantifier irgendein and local implicature [10]

6. Jonathan David Bobaljik and Susi Wurmbrand
 Fake indexicals, binding, and the PCC [13]

7. Brian Buccola and Emmanuel Chemla
 Alternatives of disjunctions: when a disjunct contains the antecedent of a pronoun .. [16]

8. Luka Crnič and Brian Buccola
 Scoping NPIs out of DPs .. [19]

9. Chris Cummins
 Some contexts requiring precise number meanings [22]

10. Patrick D. Elliott and Paul Marty
 Exactly one theory of multiplicity inferences [24]
11. Anamaria Fălăuș and Andreea C. Nicolae
 Two coordinating particles are better than one: free choice items in Romanian
 27
12. Danny Fox
 Individual concepts and narrow scope illusions
 30
13. Danny Fox
 Degree concepts and narrow scope illusions
 33
14. Nicole Gotzner
 Disjunction, conjunction, and exhaustivity
 35
15. Martin Hackl
 On Haddock’s puzzle and the role of presupposition in reference resolution
 37
16. Andreas Haida
 Symmetry, density, and formal alternatives
 40
17. Nina Haslinger and Viola Schmitt
 Strengthened disjunction or non-classical conjunction?
 43
18. Fabian Heck and Anke Himmelreich
 Two observations about reconstruction
 46
19. Aron Hirsch
 Modal adverbs and constraints on type-flexibility
 49
20. Natalia Ivlieva and Alexander Podobryaev
 On variable agreement and scope reconstruction in Russian
 52
21. Hadil Karawani
 The past is rewritten
 54
22. Manfred Krifka and Fereshteh Modarresi
 Persian ezafe and proportional quantifiers
 56
23. Paul Marty
 Maximize Presupposition! and presupposition satisfaction
 59
24. Lisa Matthewson, Sihwei Chen, Marianne Huijsmans,
 Marcin Morzycki, Daniel Reisinger, and Hotze Rullmann
 Restricting the English past tense
 61
25. Clemens Mayr
 On a seemingly nonexistent cumulative reading
 65
26. Marie-Christine Meyer
 Scalar Implicatures in complex contexts
 67
27. Moreno Mitrović
 Null disjunction in disguise
 70
28. Andreea C. Nicolae and Yasutada Sudo
 The exhaustive relevance of complex conjunctions
 72
29. Rick Nouwen
 Scalar vagueness regulation and locative reference
 75
<table>
<thead>
<tr>
<th>No.</th>
<th>Author</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Robert Pasternak</td>
<td>Unifying partitive and adjective-modifying percent</td>
<td>77</td>
</tr>
<tr>
<td>31</td>
<td>Hazel Pearson and Frank Sode</td>
<td>‘Not in my wildest dreams’: a part time minimizer?</td>
<td>80</td>
</tr>
<tr>
<td>32</td>
<td>Orin Percus</td>
<td>Uli and our generation: some reminiscences</td>
<td>82</td>
</tr>
<tr>
<td>33</td>
<td>Jacopo Romoli</td>
<td>Why them?</td>
<td>84</td>
</tr>
<tr>
<td>34</td>
<td>Fabienne Salfner</td>
<td>The rise and fall of non-conservatives</td>
<td>87</td>
</tr>
<tr>
<td>35</td>
<td>Petra B. Schumacher</td>
<td>Vagueness and context-sensitivity of absolute gradable adjectives</td>
<td>90</td>
</tr>
<tr>
<td>36</td>
<td>Stephanie Solt</td>
<td>More or less an approximator</td>
<td>93</td>
</tr>
<tr>
<td>37</td>
<td>Giorgos Spathas</td>
<td>Plural anaphoric reference and non-conservativity</td>
<td>95</td>
</tr>
<tr>
<td>38</td>
<td>Benjamin Spector</td>
<td>An argument for the trivalent approach to presupposition projection</td>
<td>97</td>
</tr>
<tr>
<td>39</td>
<td>Bob van Tiel</td>
<td>‘The case against fuzzy logic revisited’ revisited</td>
<td>100</td>
</tr>
<tr>
<td>40</td>
<td>Lyn Tieu</td>
<td>A developmental asymmetry between the singular and plural</td>
<td>103</td>
</tr>
<tr>
<td>41</td>
<td>Tue Trinh</td>
<td>A tense question</td>
<td>106</td>
</tr>
<tr>
<td>42</td>
<td>Hubert Truckenbrodt</td>
<td>On remind-me presuppositions and embedded question acts</td>
<td>108</td>
</tr>
<tr>
<td>43</td>
<td>Michael Wagner</td>
<td>Disjuncts must be mutually excludable</td>
<td>111</td>
</tr>
<tr>
<td>44</td>
<td>E. Cameron Wilson</td>
<td>Constraints on non-conservative readings in English</td>
<td>114</td>
</tr>
<tr>
<td>45</td>
<td>Susi Wurmbrand</td>
<td>Indexical shift meets ECM</td>
<td>117</td>
</tr>
</tbody>
</table>
Individual concepts and narrow scope illusions

Danny Fox · Massachusetts Institute of Technology

DOI: http://dx.doi.org/10.7358/snip-2019-037-foxa

(1), inspired by an example from Schwarzchild (To appear), can be true even if there are no actual boxcars (e.g. no freight train planned for the region). This rules out a de-re construal (even if one is creative about counter-part relations or concept-generators; Percus and Sauerland 2003, Sauerland 2014).

(1) {Jack and Jill, both train enthusiasts, discuss a high-speed freight train that they think will be built in their region. They agree that there will be four different boxcars painted red, blue, yellow, and green. Jack is hoping to ride on the red, blue, and yellow boxcars. Jill is hoping to ride the red and blue boxcars.}

Jack is hoping to ride on every boxcar that Jill is.

Given the de-dicto interpretation, we might think that the quantifier phrase every boxcar is interpreted within the scope of the attitude verb hope. But then Antecedent Contained Deletion (ACD) would not be resolved, contrary to fact.

Should we revisit our assumptions about ACD? The risk is to leave well-known observations about scope unaccounted for (Sag 1976, Williams 1977, Larson and May 1990). To see the challenge, consider a minimal variation on (1) below, modelled on an example from Sag.

(2) {Jill is a train enthusiast. Jack has no interest in trains and has never thought about the properties of boxcars in a train that Jill hopes will be built in the region. However, he’s very much interested in impressing Jill. If asked which boxcars he hopes to ride, he’d answer: “Every boxcar that Jill is hoping to ride.”}

Jack is hoping to ride on every boxcar that Jill is. [false]

(Cf. Jack is hoping to ride on every boxcar that Jill is hoping to ride on.)

(2) is false, and this teaches us that every boxcar must take scope outside of the intensional verb hope for ACD to be resolved, which in turn means that in (1) this scopal relation still allows the noun boxcar to receive a de-dicto interpretation. The conclusion is further supported by the inverse scope de-dicto interpretation in (3); see Geach (1967) for related observations and proposals.

(3) {A group of children discuss a high-speed freight train that they hope will be built in their region. They agree that there will be four different boxcars painted red, blue, yellow, and green. One boy and one girl hope to ride on the red boxcar, another boy and girl hope to ride on the blue boxcar. The other two imagined boxcars do not interest any of the girls (though one of them might interest a third boy).}

A boy is hoping to ride on every boxcar that a girl is.
Based on (1) and (3), we must reject the assumption that a de-dicto interpretation for a noun requires narrow scope for the quantifier that the noun restricts (see Szabó 2010, Keshet and Schwarz 2019). But how are the wide scope de-dicto interpretations in (1) and (3) represented? I would like to suggest a version of every that quantifies over individual concepts with the lexical entries in (4) and (5), and a logical form for (1) as indicated in (6), with C a covert domain restrictor.

(Considerations brought up in Aloni 2001 will have to wait for another occasion.)

(4) \[every \[(C_{se,t})(A_{se,t})(B_{se,t}) \iff C \cap A \subseteq B \]
(5) \[[\text{boxcar}] = \lambda x_{se}. \forall w \in \text{domain}(x)[x(w) \text{ is a boxcar in } w] \]
(6) every C boxcar \[\lambda x_{se}[[\text{hoping}(\lambda w. \text{Jill ride}_w x(w))]\]
\[\lambda x_{se}[[\text{hoping}(\lambda w. \text{Jack ride}_w x(w))]\]

Where the denotation of C will have the four salient individual concepts as members:
\[\lambda w. \text{the red boxcar in } w, \lambda w. \text{the blue boxcar in } w, \ldots. \]

References

Danny Fox
fox@mit.edu