Contents

1. Andreea C. Nicolae, Patrick D. Elliott, and Yasutada Sudo
 Introduction ... 1
2. Dorothy Ahn
 ASL IX to locus as a modifier ... 2
3. Artemis Alexiadou
 Decomposing scalar approximatives in Greek 3
4. Anna Alsop, Lucas Champollion, and Ioana Grosu
 A problem for Fox’s (2007) account of free choice disjunction 7
5. Anton Benz and Nicole Gotzner
 Quantifier irgendein and local implicature 10
6. Jonathan David Bobaljik and Susi Wurmbrand
 Fake indexicals, binding, and the PCC 13
7. Brian Buccola and Emmanuel Chemla
 Alternatives of disjunctions: when a disjunct contains the antecedent of a pronoun ... 16
8. Luka Crnić and Brian Buccola
 Scoping NPIs out of DPs .. 19
9. Chris Cummins
 Some contexts requiring precise number meanings 22
10. Patrick D. Elliott and Paul Marty
 Exactly one theory of multiplicity inferences 24
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Anamaria Fălaşuș and Andreea C. Nicolae</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Two coordinating particles are better than one: free choice items in Romanian</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Danny Fox</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Individual concepts and narrow scope illusions</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Danny Fox</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Degree concepts and narrow scope illusions</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Nicole Gotzner</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Disjunction, conjunction, and exhaustivity</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Martin Hackl</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>On Haddock’s puzzle and the role of presupposition in reference resolution</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Andreas Haida</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Symmetry, density, and formal alternatives</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Nina Haslinger and Viola Schmitt</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Strengthened disjunction or non-classical conjunction?</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Fabian Heck and Anke Himmelreich</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Two observations about reconstruction</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Aron Hirsch</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Modal adverbs and constraints on type-flexibility</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Natalia Ivlieva and Alexander Podobryaev</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>On variable agreement and scope reconstruction in Russian</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Hadil Karawani</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>The past is rewritten</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Manfred Krifka and Fereshteh Modarresi</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Persian ezafe and proportional quantifiers</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Paul Marty</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Maximize Presupposition! and presupposition satisfaction</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Lisa Matthewson, Sihwei Chen, Marianne Huijsmans, Marcin Morzycki, Daniel Reisinger, and Hotze Rullmann</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Restricting the English past tense</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Clemens Mayr</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>On a seemingly nonexistent cumulative reading</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Marie-Christine Meyer</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Scalar Implicatures in complex contexts</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Moreno Mitrović</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>Null disjunction in disguise</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Andreea C. Nicolae and Yasutada Sudo</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>The exhaustive relevance of complex conjunctions</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Rick Nouwen</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Scalar vagueness regulation and locative reference</td>
<td></td>
</tr>
</tbody>
</table>
30. Robert Pasternak
 Unifying partitive and adjective-modifying percent .. 77
31. Hazel Pearson and Frank Sode
 ‘Not in my wildest dreams’: a part time minimizer? ... 80
32. Orin Percus
 Uli and our generation: some reminiscences .. 82
33. Jacopo Romoli
 Why them? .. 84
34. Fabienne Salfner
 The rise and fall of non-conservatives .. 87
35. Petra B. Schumacher
 Vagueness and context-sensitivity of absolute gradable adjectives 90
36. Stephanie Solt
 More or less an approximator .. 93
37. Giorgos Spathas
 Plural anaphoric reference and non-conservativity ... 95
38. Benjamin Spector
 An argument for the trivalent approach to presupposition projection 97
39. Bob van Tiel
 ‘The case against fuzzy logic revisited’ revisited ... 100
40. Lyn Tieu
 A developmental asymmetry between the singular and plural 103
41. Tue Trinh
 A tense question ... 106
42. Hubert Truckenbrodt
 On remind-me presuppositions and embedded question acts 108
43. Michael Wagner
 Disjuncts must be mutually excludable .. 111
44. E. Cameron Wilson
 Constraints on non-conservative readings in English .. 114
45. Susi Wurmbrand
 Indexical shift meets ECM .. 117
Unifying partitive and adjective-modifying \textit{percent}

Robert Pasternak · Leibniz-Zentrum Allgemeine Sprachwissenschaft

DOI: http://dx.doi.org/10.7358/snip-2019-037-past

\textbf{Ahn and Sauerland (2015, 2017; hereafter A&S)} analyze two constructions: proportional partitives like (1a), and “non-conservative” proportional measurement constructions like (1b):

\begin{enumerate}
\item a. The company hired 70\% of the women.
\item b. The company hired 70\% women.
\end{enumerate}

\textit{Paraphrase:} 70\% of the company’s hirees were women.

A&S treat (1a) and (1b) as involving distinct syntactic representations that nonetheless both contain proportional partitive structures; in (1a) this is obvious, and in (1b) the partitive structure is embedded in a syntactic environment that generates the non-conservative reading. This snippet deals only with the partitive structure itself, and thus I focus on (1a).

According to A&S, (1a) has a structure like (2).

\begin{enumerate}
\item [70 \{\text{percent} \{the women\}\}] \lambda x_1 \text{ the company hired} t_1
\end{enumerate}

The crucial semantic work is done by \{\text{percent}\}, which A&S define as in (3):

\begin{enumerate}
\item \{\text{percent}\}_\text{A&S} = \lambda x \lambda n \lambda P_1 \frac{\mu(x \cap \sigma y[P(y)])}{\mu(x)} = \frac{n}{100}
\end{enumerate}

where \mu is a contextually determined measure function, \(a \cap b\) is the mereological overlap of \(a\) and \(b\), and \(\sigma y[P(y)]\) is the sum of the members of \(P\).

When \{\text{percent}\} combines with its arguments in succession, the result is as in (4).

\begin{enumerate}
\item \frac{\mu(\sigma x[\text{women}(x)] \cap \sigma y[\text{the company hired} y])}{\mu(\sigma x[\text{women}(x)])} = \frac{70}{100}
\end{enumerate}

Assuming that context assigns \mu to \(| \cdot |\) (cardinality), this gets the right result: the cardinality of the overlap of women and hirees, divided by the cardinality of the total plurality of women, is \(\frac{70}{100}\).

While A&S’s definition of \{\text{percent}\} gets the right results, it begs for unification with another use of \textit{percent} as an adjectival modifier, as discussed by \textit{Kennedy and McNally (2005)}:

\begin{enumerate}
\item The glass is 75\% full.
\end{enumerate}

How do we unify? I will start with the adjective-modifying case, then translate to partitives. For the former, we define \{\text{percent}\} as in (6); it takes an adjective denotation \(A\) (a relation between degrees and individuals) and number \(n\), and returns a predicate true of \(x\) if the maximal degree to which \(x\) is \(A\) is \(n\%\) of the way up \(A\)’s scale.

\begin{enumerate}
\item \{\text{percent}\} = \lambda A \lambda n \lambda x. \frac{\max\{d \mid A(d)(x)\} - \min(\text{RNG}(A))}{\max(\text{RNG}(A)) - \min(\text{RNG}(A))} = \frac{n}{100}
\end{enumerate}

where \text{RNG}(A) \equiv \{d \mid \exists x[A(d)(x) \text{ is defined}]\}
The reference to maximal/minimal degrees accounts for the familiar observation that proportional modifiers require closed scales (cf. #70% tall).

Turning to 70% of the women, I roughly follow A&S in adopting the following syntax:

(7) \[\text{[SOME [70 [percent [MUCH [the women]]]]]]} \lambda_1 \text{ the company hired } t_1 \]

Partially adopting ideas from Wellwood [2015], the main work here is done by silent MUCH, which takes an individual and returns an adjective-type denotation.

\[
\text{[[MUCH]](x)(y) = \lambda x \lambda d \lambda y : \mu(x) \geq d. \ y \subseteq x \land \mu(y) \geq d}
\]

\[
\text{[[MUCH]](x)(d)(y) \text{ presupposes that } d \text{ is no greater than } \mu(x), \text{ and asserts that } y \text{ is a part of } x \text{ and } \mu(y) \text{ is at least } d. \text{ As a result, min(RNG([[MUCH]](x))) is the zero-degree of } \mu (= 0_\mu), \text{ and because of the presupposition, max(RNG([[MUCH]](x))) = } \mu(x). \text{ Thus, } [70% \text{ of the women}] \text{ is as in (9):}
\]

\[
\text{[[percent]]([[MUCH]]([[the women]]))(\text{[[70]]]) = } \lambda y. \frac{\text{max}\{(d \mid y \subseteq } \sigma x[\text{women}(x)] \land \mu(y) \geq d\}) - 0_\mu}{\mu(\sigma x[\text{women}(x)]) - 0_\mu} = \frac{70}{100}
\]

In plain English, we get a predicate true of a part of the women iff its cardinality is 70% of that of the total plurality of women. This then restricts the existentially quantifying SOME, with the rest of the sentence being the scope; the resulting denotation of (1a) is as in (10):

\[
\exists y \left[\frac{\text{max}\{(d \mid y \subseteq } \sigma x[\text{women}(x)] \land \mu(y) \geq d\}) - 0_\mu}{\mu(\sigma x[\text{women}(x)]) - 0_\mu} = \frac{70}{100} \land \text{the company hired } y \right]
\]

The final denotation is thus paraphrasable as follows: there is a plural individual \(y \) that is a collection of women whose cardinality is 70% of that of the total plurality of women, and is such that the company hired \(y \). This matches the intuitive truth conditions of (1a), while adopting a unified semantic analysis for [[percent]]. Moreover, while a full demonstration must be left for future work, this analysis can be extended equally well to A&S’s treatment of (1b), and the proposed structural relationship between (1a) and (1b) can be maintained.

References

This research has been funded by the DFG project ‘Relative measurement and the DP-border’, which is gratefully acknowledged.