Contents

2. Natasha Korotkova. *Interrogative flip and indexical shift are distinct phenomena.*
5. Eszter Ronai and Laura Stigliano. *NP ellipsis bleeds allomorphy in Hungarian.*
Might generics

Brian Rabern · University of Edinburgh

DOI: http://dx.doi.org/10.7358/snip-2020-039-rabe

The logical form of a generic sentence such as *Dogs bark* is usually analyzed, à la [Lewis 1975], in terms of an (unpronounced) two place operator \(\text{GEN} \) and its arguments, the restrictor \(\text{dogs}(x) \) and the matrix \(\text{bark}(x) \): \(\text{GEN} \{ \text{dogs}(x) \} [\text{bark}(x)] \). (Our focus here is on simple characterizing generic sentences with bare plurals and stative predicates.) See [Carlson and Pelletier 1995] for an overview of this standard tripartite analysis, and discussion of various complications. The semantics of \(\text{GEN} \) is more controversial. But a promising approach assigns a generic sentence the truth-conditions of a quantified modal conditional, \(\forall x (\text{dogs}(x) > \text{bark}(x)) \), where the modality is “normalcy” and \(> \) is a variably strict conditional. See [Delgrande 1987], [Asher and Morreau 1995], and [Pelletier and Asher 1997].

But how do generics interact with other modals? I’ll offer one observation about an interaction with *might* that presents a challenge for standard theories.

Wild mushrooms are a mixed bag — some are poisonous and some are harmless. So it is not the case that if something is a wild mushroom then normally it is poisonous, but it is also not true that if something is a wild mushroom then normally it isn’t poisonous. There is no generic truth here. Thus, the following are both false:

1. Wild mushrooms are poisonous.
2. Wild mushrooms aren’t poisonous.

Of course, there are tricky cases with *striking property* or *existential readings* ([Cohen 2004]), but the standard analysis predicts that there are pairs such as (1) and (2) that — in the right context with the right disambiguation — are both false. Now consider the following “*might*-generic”:

3. Wild mushrooms might be poisonous.

In the situation we are considering (3) is true. But does *might* have a wide-scope or narrow-scope reading with respect to \(\text{GEN} \)?

Clearly (3) can’t express that the corresponding generic is epistemically possible — we know that the corresponding generic (1) is false (in the relevant context). That is, the *might* here doesn’t scope over the corresponding generic.

Instead, it seems to express the *dual* of the \(\text{GEN} \) operator in a way that is reminiscent of what [Lewis 1973] said about *might*-counterfactuals: “if \(A \) then *might* \(B \)” is equivalent to “not: if \(A \) then would not-\(B \)” . But the challenge for the dual analysis is to compositionally implement the “Lewisian equivalencies” whereby (3) is equivalent to (4).

4. It is not the case that wild mushrooms aren’t poisonous.

The challenge, then, is to provide such an account in terms of the denotation of *might* and \(\text{GEN} \).
Note that it would not do to analyze (3) as saying that if something is a wild mushroom, then it would normally be such that it is possible that it is poisonous. This treatment is analogous to the contentious “would-be-possible” readings of might-counterfactuals (Lewis 1986: 63-4). But then duality fails. Moreover, since might is epistemic, (3) comes out as false given that some wild mushrooms are easy-to-identify as non-poisonous (cf. Lewis 1973: 80-1). So this, unfortunately, gets the logic wrong.

References

Brian Rabern
brian.rabern@gmail.com
School of Philosophy, Psychology and Language Sciences
University of Edinburgh
3 Charles St.
Edinburgh EH8 9AD
UK