Led On Line
Presentazione - About us
Novita' - What's new
E-Journals
E-books
Lededizioni Home Page Ricerca - Search
Catalogo - Catalogue
Per contattarci - Contacts
Per gli Autori - For the Authors
Statistiche - Statistics
Cookie Policy
Privacy Policy

How to Improve Critical Thinking in Physics Learning? A Systematic Literature Review

Mujib Ubaidillah, Hartono Hartono, Putut Marwoto, Wiyanto Wiyanto, Bambang Subali

Abstract


COME MIGLIORARE IL PENSIERO CRITICO NELL’APPRENDIMENTO DELLA FISICA? UNA REVISIONE SISTEMATICA DELLA LETTERATURA

Abstract

Critical thinking skills are essential skills needed in the 21st century. Critical thinking skills can be trained in students through student-centered learning. Through a literature review, this research aims to determine learning models that can improve critical thinking skills in physics. Data collection was based on Scopus and Google Scholar database sources. This type of document comes from journal articles with the keywords «critical thinking», «learning models», and «physics learning» from the years (2011-2021). The literature review used procedures adapted from PRISMA. Documents published are based on predetermined content analysis criteria, including year of publication, author, article source, learning model, physics material topic, research subject, education level, and assessment. Inquiry learning and the higher-order thinking laboratory (HOT Lab) dominate the learning models used to improve critical thinking skills. The critical skills indicators used vary. Indicators of critical thinking skills. Self-regulated learning is rarely used in research instruments compared to other indicators of critical thinking skills. The instruments used are multiple-choice, essays, worksheets, and observation sheets. Research respondents at the university level are often used in studies of critical thinking skills. Fluid mechanics is a topic that is often used in research. This research contributes to improving students’ critical thinking skills through various recommended learning models. Research findings show that student-centered learning models can improve critical thinking skills.


Keywords


Critical thinking skills; Fluid mechanics; Guided inquiry; Learning models; Physics learning; Abilità di pensiero critico; Apprendimento della fisica; Indagine guidata; Meccanica dei fluidi; Modelli di apprendimento

Full Text:

PDF

References


Adolphus, T., & Omeodu, D. (2016). Effects of gender and collaborative learning approach on students’ conceptual understanding of electromagnetic induction. Journal of Curriculum and Teaching, 5(1), 78-86. doi: https://doi.org/10.5430/jct.v5n1p78.

Afriana, J., Permanasari, A., & Fitriani, A. (2016). Project based learning integrated to STEM to enhance elementary school’s students scientific literacy. Jurnal Pendidikan IPA Indonesia, 5(2), 261-267. doi: https://doi.org/10.15294/jpii.v5i2.5493.

Ahern, A., Dominguez, C., McNally, C., O’Sullivan, J. J., & Pedrosa, D. (2019). A literature review of critical thinking in engineering education. Studies in Higher Education, 44(5), 816-828. doi: https://doi.org/10.1080/03075079.2019.1586325.

Akhdinirwanto, R. W., Agustini, R., & Jatmiko, B. (2020). Problem-based learning with argumentation as a hypothetical model to increase the critical thinking skills for junior high school students. Jurnal Pendidikan IPA Indonesia, 9(3), 340-350. doi: https://doi.org/10.15294/jpii.v9i3.19282.

Alpaslan, M. M., Yalvac, B., Loving, C. C., & Willson, V. (2016). Exploring the relationship between high school students’ physics-related personal epistemologies and self-regulated learning in Turkey. International Journal of Science and Mathematics Education, 14(2), 297-317. doi: https://doi.org/10.1007/s10763-015-9685-7.

Alsaleh, N. J. (2020). Teaching critical thinking skills: Literature review. TOJET: The Turkish Online Journal of Educational Technology, 19(1), 21-39.

Alsarayreh, R. S. (2021). Developing critical thinking skills towards biology course using two active learning strategies. Cypriot Journal of Educational Sciences, 16(1), 221-237. doi: https://doi.org/10.18844/cjes.v16i1.5521.

Baser, M. (2006). Effects of conceptual change and traditional confirmatory simulations on pre-service teachers’ understanding of direct current circuits. Journal of Science Education and Technology, 15(5-6), 367-381. doi: https://doi.org/10.1007/s10956-006-9025-3.

Bensley, D. A., Lilienfeld, S. O., & Powell, L. A. (2014). A new measure of psychological misconceptions: Relations with academic background, critical thinking, and acceptance of paranormal and pseudoscientific claims. Learning and Individual Differences, 36, 9-18. doi: https://doi.org/10.1016/j.lindif.2014.07.009.

Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M., Miller-Ricci, M., & Rumble, M. (2012). Defining twenty-first century skills. In P. Griffin, B. McGaw, & E. Care (Eds.), Assessment and teaching of 21st century skills (pp. 17-66). doi: https://doi.org/10.1007/978-94-007-2324-5_2.

Brown, D. E. (1992). Using examples and analogies to remediate misconceptions in physics: Factors influencing conceptual change. Journal of Research in Science Teaching, 29(1), 17-34. doi: https://doi.org/10.1002/tea.3660290104.

Caleon, I., & Subramaniam, R. (2010). Development and application of a three-tier diagnostic test to assess secondary students’ understanding of waves. International Journal of Science Education, 32(7), 939-961. doi: https://doi.org/10.1080/09500690902890130.

Çorlu, M. A., & Çorlu, M. S. (2012). Scientific inquiry based professional development models in teacher education. Educational Sciences: Theory & Practice, 12(1), 514-521.

Dellantonio, S., & Pastore, L. (2021). Ignorance, misconceptions and critical thinking. Synthese, 198(8), 7473-7501. doi: https://doi.org/10.1007/s11229-019-02529-7.

Domingo, J. G., Ibañez, E. D., Subia, G. S., Pentang, J. T., Gamit, A. M., Pascual, L. E., Mina, J. C., Tomas, A. V., & Liangco, M. M. (2021). Cognitive skills achievement in mathematics of the elementary pre-service teachers using Piaget’s seven logical operations. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(4), 435-440. doi: https://doi.org/10.17762/turcomat.v12i4.524.

Duncan, K. J. (2020). Examining the effects of immersive game-based learning on student engagement and the development of collaboration, communication, creativity and critical thinking. TechTrends, 64(3), 514-524. doi: https://doi.org/10.1007/s11528-020-00500-9.

Elder, L., & Paul, R. (2010). Critical thinking: Competency standards essential for the cultivation of intellectual skills. Journal of Developmental Education, 34(2), 1-2.

Ennis, R. H. (2016). Critical thinking across the curriculum: A vision. Topoi, 37(1), 165-184. doi: https://doi.org/10.1007/s11245-016-9401-4.

Etkina, E., & Planinšič, G. (2015). Defining and developing ‘critical thinking’ through devising and testing multiple explanations of the same phenomenon. The Physics Teacher, 53(7), 432-437. doi: https://doi.org/­10.1119/1.4931014.

Facione, P. A. (1990). Critical thinking: A statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations. Newark, DE: American Philosophical Association.

Facione, P. A. (2011). Measured reason and critical thinking: What it is and why it counts. Millbrae, CA: California Academic Press.

Facione, P. A., Crossetti, M., & Riegel, F. (2017). Holistic critical thinking in the nursing diagnostic process. Revista Gaúcha de Enfermagem, 38(3), e75576. doi: https://doi.org/10.1590/1983-1447.2017.03.75576.

Foote, K., & Martino, S. (2018). Implementing investigative labs and writing intensive reports in large university Physics Courses. The Physics Teacher, 56(7), 466-469. doi: https://doi.org/10.1119/1.5055331.

Foroushani, S. (2019). Misconceptions in engineering thermodynamics: A review. International Journal of Mechanical Engineering Education, 47(3), 195-209. doi: https://doi.org/10.1177/0306419018754396.

Freudenberg, B., & Brimble, M. (2009). WIL and generic skill development: The development of business students’ generic skills through work-integrated learning. Asia – Pacific Journal of Cooperative Education, 12(2), 79-93.

Furtak, E. M., & Penuel, W. R. (2019). Coming to terms: Addressing the persistence of ‘hands-on’ and other reform terminology in the era of science as practice. Science Education, 103(1), 167-186. doi: https://doi.org/10.1002/sce.21488.

Hadi, S. A., Susantini, E., & Agustini, R. (2018). Training of students’ critical thinking skills through the implementation of a modified free inquiry model. Journal of Physics: Conference Series, 947(1), 012063. doi: https://doi.org/10.1088/1742-6596/947/1/012063.

Halpern, D. F. (2013). Thought and knowledge: An introduction to critical thinking (5th ed.). New York: Psychology Press. doi: https://doi.org/­10.­4324/­9781315885278.

Hand, B., Shelley, M. C., Laugerman, M., Fostvedt, L., & Therrien, W. (2018). Improving critical thinking growth for disadvantaged groups within elementary school science: A randomized controlled trial using the Science Writing Heuristic approach. Science Education, 102(4), 693-710. doi: https://doi.org/10.1002/sce.21341.

Hasan, S., Bagayoko, D., & Kelley, E. L. (1999). Misconceptions and the certainty of response index (CRI). Physics Education, 34(5), 294-299. doi: https://doi.org/10.1088/0031-9120/34/5/304.

Hastuti, P. W., Nurohman, S., & Setianingsih, W. (2018). The development of science worksheet based on inquiry science issues to improve critical thinking and scientific attitude. Journal of Physics: Conference Series, 1097, 1-8. doi: https://doi.org/10.1088/1742-6596/1097/1/012004.

Howlett, C., Ferreira, J. A., & Blomfield, J. (2016). Teaching sustainable development in higher education: Building critical, reflective thinkers through an interdisciplinary approach. International Journal of Sustainability in Higher Education, 17(3), 305-321. doi: https://doi.org/10.1108/IJSHE-07-2014-0102.

Huilier, D. G. F. (2019). Forty years’ experience in teaching fluid mechanics at Strasbourg University. Fluids, 4(4), 1-18.

Hyytinen, H. (2015). Theoretical, empirical and methodological insights into critical thinking. Academic dissertation, University of Helsinki.

Hyytinen, H., Toom, A., & Shavelson, R. J. (2019). Enhancing scientific thinking through the development of critical thinking in higher education. In M. Murtonen & K. Balloo (Eds.), Redefining scientific thinking for higher education: Higher-order thinking, evidence-based reasoning and research skills (pp. 59-78). Cham: Palgrave Macmillan. doi: https://doi.org/10.1007/978-3-030-24215-2_3.

Ismail, N. S., Harun, J., Zakaria, M. A. Z. M., & Salleh, S. M. (2018). The effect of mobile problem-based learning application DicScience PBL on students’ critical thinking. Thinking Skills and Creativity, 28, 177-195. doi: https://doi.org/10.1016/j.tsc.2018.04.002.

Jones, A. (2009). Generic attributes as espoused theory: The importance of context. Higher Education, 58(2), 175-191. doi: https://doi.org/10.1007/s10734-­008-9189-2.

Kaltakci-Gurel, D., Eryilmaz, A., & McDermott, L. C. (2017). Development and application of a four-tier test to assess pre-service physics teachers’ misconceptions about geometrical optics. Research in Science and Technological Education, 35(2), 238-260. doi: https://doi.org/10.1080/02635143.2017.1310094.

Kaniawati, I., Fratiwi, N. J., Danawan, A., Suyana, I., Samsudin, A., & Suhendi, E. (2019). Analyzing students’ misconceptions about Newton’s laws through four-tier Newtonian test (FTNT). Journal of Turkish Science Education, 16(1), 110-122.

Lestari, T., Supardi, Z. A. I., & Jatmiko, B. (2021). Virtual classroom critical thinking as an alternative teaching model to improve students’ critical thinking skills in pandemic coronavirus disease era. European Journal of Educational Research, 10(4), 2003-2015.

Li, M., Zheng, C., Liang, J. C., Zhang, Y., & Tsai, C. C. (2018). Conceptions, self-regulation, and strategies of learning science among chinese high school students. International Journal of Science and Mathematics Education, 16(1), 69-87. doi: https://doi.org/10.1007/s10763-016-9766-2.

Lisdiani, S. A. S., Setiawan, A., Suhandi, A., Malik, A., & Safitri, D. (2019). The implementation of HOT Lab activity to improve students critical thinking skills. Journal of Physics: Conference Series, 1204(012033), 1-6. doi: https://doi.org/10.1088/1742-6596/1204/1/012033.

Maknun, J. (2020). Implementation of guided inquiry learning model to improve understanding physics concepts and critical thinking skill of vocational high school students. International Education Studies, 13(6), 117. doi: https://­doi.org/10.5539/ies.v13n6p117.

Malik, A., Setiawan, A., Suhandi, A., & Permanasari, A. (2017). Learning experience on transformer using HOT Lab for pre-service physics teacher’s. Journal of Physics: Conference Series, 895(1). doi: https://doi.org/10.1088/1742-6596/895/1/012140.

Malik, A., Setiawan, A., Suhandi, A., & Permanasari, A. (2018). Enhancing pre-service physics teachers’ creative thinking skills through HOT lab design. AIP Conference Proceedings, 1868(August 2017). doi: https://doi.org/10.1063/1.4995177.

Malik, A., Setiawan, A., Suhandi, A., Permanasari, A., Nasrudin, D., Yuningsih, E. K., & Rochman, C. (2018). The impact HOT Lab to increase student’s critical thinking skills. Asian Education Symposium – AES 2017 (January), 184-188. doi: https://doi.org/10.5220/0007300801840188.

Malik, A., Setiawan, A., Suhandi, A., Permanasari, A., Samsudin, A., Dirgantara, Y., & Hermita, N. (2019). The development of higher order thinking laboratory (HOTLAB) model related to heat transfer topic. Journal of Physics: Conference Series, 1204(012060), 1-7. doi: https://doi.org/10.1088/1742-6596/1204/1/012060.

Malik, A., Setiawan, A., Suhandi, A., Permanasari, A., Samsudin, A., Safitri, D., Lisdiani, S. A. S., Sapriadil, S., & Hermita, N. (2018). Using hot lab to increase pre-service physics teacher’s critical thinking skills related to the topic of RLC circuit. Journal of Physics: Conference Series, 1013(1). doi: https://doi.org/10.1088/1742-6596/1013/1/012023.

Malik, A., & Ubaidillah, M. (2020). Students critical-creative thinking skill: A multivariate analysis of experiments and gender. International Journal of Cognitive Research in Science, Engineering and Education, Special Issue, 8(1), 49-58.

Malik, A., & Ubaidillah, M. (2021). Multiple skill laboratory activities: How to improve students’ scientific communication and collaboration skills. Jurnal Pendidikan IPA Indonesia, 10(4), 585-595. doi: https://doi.org/10.15294/jpii.v10i4.31442.

Marin, L. M., & Halpern, D. F. (2011). Pedagogy for developing critical thinking in adolescents: Explicit instruction produces greatest gains. Thinking Skills and Creativity, 6(1), 1-13. doi: https://doi.org/10.1016/j.tsc.2010.08.002.

Masson, S., Potvin, P., Riopel, M., & Foisy, L. M. B. (2014). Differences in brain activation between novices and experts in science during a task involving a common misconception in electricity. Mind, Brain, and Education, 8(1), 44-55. doi: https://doi.org/10.1111/mbe.12043.

Medriati, R., Hamdani, D., & Harjilah, N. (2021). The difference in the guided inquiry model towards critical thinking skills in physics subject at SMAN 3 Kota Bengkulu. Journal of Physics: Conference Series, 1731(1). doi: https://doi.org/10.1088/1742-6596/1731/1/012074.

Memiş, E. K., & Seven, S. (2015). Effects of an SWH approach and self-evaluation on sixth grade students’ learning and retention of an electricity unit. International Journal of Progressive Education, 11(3), 32-48.

Mohottala, H. E. (2016). Improving critical skills using Wikis and CGPS in a physics classroom. The Physics Teacher, 54(7), 427-430. doi: https://doi.org/­10.1119/1.4962782.

Mutakinati, L., Anwari, I., & Yoshisuke, K. (2018). Analysis of students’ critical thinking skill of middle school through STEM education project-based learning. Jurnal Pendidikan IPA Indonesia, 7(1), 54-65. doi: https://doi.org/10.15294/jpii.v7i1.10495.

Nisa, E. K., Koestiari, T., Habibbulloh, M., & Jatmiko, B. (2018). Effectiveness of guided inquiry learning model to improve students’ critical thinking skills at senior high school. Journal of Physics: Conference Series, 997(1), 1-6. doi: https://doi.org/10.1088/1742-6596/997/1/012049.

Nugraha, M. G., Kaniawati, I., Rusdiana, D., & Kirana, K. H. (2016). Combination of inquiry learning model and computer simulation to improve mastery concept and the correlation with critical thinking skills (CTS). AIP Conference Proceedings, 1708(1). doi: https://doi.org/10.1063/1.4941181.

Onsee, P., & Nuangchalerm, P. (2019). Developing critical thinking of grade 10 students through inquiry-based STEM learning. Jurnal Penelitian Dan Pembelajaran IPA, 5(2), 132. doi: https://doi.org/10.30870/jppi.v5i2.5486.

Page, M. J., Mckenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., Mcdonald, S., …, Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews, 10(1). doi: https://doi.org/10.1186/s13643-021-01626-4.

Pathare, S. R., & Pradhan, H. C. (2010). Students’ misconceptions about heat transfer mechanisms and elementary kinetic theory. Physics Education, 45(6), 629-634. doi: https://doi.org/10.1088/0031-9120/45/6/008.

Paul, R., & Elder, L. (2020). The miniature guide to critical thinking concept and tools. Lanham, MD: Rowman & Littlefield.

Peşman, H., & Eryilmaz, A. (2010). Development of a three-tier test to assess misconceptions about simple electric circuits. Journal of Educational Research, 103(3), 208-222. doi: https://doi.org/10.1080/00220670903383002.

Planinic, M., Boone, W. J., Krsnik, R., & Beilfuss, M. L. (2006). Exploring alternative conceptions from newtonian dynamics and simple DC circuits: Links between item difficulty and item confidence. Journal of Research in Science Teaching, 43(2), 150-171. doi: https://doi.org/10.1002/tea.20101.

Prayogi, S. (2018). Critical inquiry based learning: A model of learning to promote critical thinking among prospective teachers of physic. Journal of Turkish Science Education, 15(1), 43-56. doi: https://doi.org/10.12973/tused.10220a.

Prayogi, S., Muhali, Yuliyanti, S., As’ary, M., Azmi, I., & Verawati, N. N. S. P. (2019). The effect of presenting anomalous data on improving student’s critical thinking ability. International Journal of Emerging Technologies in Learning, 14(6), 133-137. doi: https://doi.org/10.3991/ijet.v14i06.9717.

Prayogi, S., & Verawati, N. N. S. P. (2020). The effect of conflict cognitive strategy in inquiry-based learning on preservice teachers’ critical thinking ability. Journal of Educational, Cultural and Psychological Studies, 21, 27-41. doi: https://doi.org/10.7358/ecps-2020-021-pray.

Prayogi, S., Yuanita, L., & Wasis. (2018). Critical-inquiry-based-learning: Model of learning to promote critical thinking ability of pre-service teachers. Journal of Physics: Conference Series, 947(1). doi: https://doi.org/10.1088/1742-6596/947/1/012013.

Puig, B., Blanco-Anaya, P., Bargiela, I. M., & Crujeiras-Pérez, B. (2019). A systematic review on critical thinking intervention studies in higher education across professional fields. Studies in Higher Education, 44(5), 860-869. doi: https://doi.org/10.1080/03075079.2019.1586333.

Putra, R. P., Agustina, R. D., Pitriana, P., Andhika, S., & Setia, M. D. (2021). Developing HOT-LAB-based physics practicum e-module to improve practicing critical thinking skills. Journal of Science Education Research, 5(2), 43-49.

Ratna, S. D., Simanjuntak, M. P., & Sahyar. (2021). Analysis of critical and creative thinking skills on the topic of static fluid physics with guided inquiry learning assisted by computer simulation. Journal of Physics: Conference Series, 1811(1), 1-6. doi: https://doi.org/10.1088/1742-6596/1811/1/012004.

Risdianto, E., Dinissjah, M. J., Nirwana, & Kristiawan, M. (2020). The effect of ethno science-based direct instruction learning model in physics learning on students’ critical thinking skill. Universal Journal of Educational Research, 8(2), 611-615. doi: https://doi.org/10.13189/ujer.2020.080233.

Saputri, A. C., Sajidan, Rinanto, Y., Afandi, & Prasetyanti, N. M. (2019). Improving students’ critical thinking skills in cell-metabolism learning using stimulating higher order Thinking Skills Model. International Journal of Instruction, 12(1), 327-342.

SawitreePipitgool, Pimdee, P., SomkiatTuntiwongwanich, & Narabin, A. (2021). Enhancing student computational thinking skills by use of a flipped-classroom learning model and critical thinking problem-solving activities: A conceptual framework. Turkish Journal of Computer and Mathematics Education, 12(14), 1352-1363.

Schmidt, M., & Fulton, L. (2016). Transforming a traditional inquiry-based science unit into a STEM unit for elementary pre-service teachers: A view from the trenches. Journal of Science Education and Technology, 25(2), 302-315. doi: https://doi.org/10.1007/s10956-015-9594-0.

Seranica, C., Purwoko, A. A., & Hakim, A. (2018). Influence of guided inquiry learning model to critical thinking skills. IOSR Journal of Research & Method in Education, 8(1), 28-31. doi: https://doi.org/10.9790/7388-0801022831.

Sermeus, J., De Cock, M., & Elen, J. (2021). Critical thinking in electricity and magnetism: Assessing and stimulating secondary school students. International Journal of Science Education, 43(16), 2597-2617. doi: https://doi.org/10.1080/09500693.2021.1979682.

Setiawan, A., Malik, A., Suhandi, A., & Permanasari, A. (2018). Effect of higher order thinking laboratory on the improvement of critical and creative thinking skills. IOP Conference Series: Materials Science and Engineering, 306(012008), 1-8. doi: https://doi.org/10.1088/1757-899X/­306/­1/­012008.

Setya, W., Agustina, R. D., Putra, R. P., Prihatini, S., Hidayatulloh, R., Isnaeni, P. S., & Malik, A. (2021). Implementation of higher order thinking laboratory (HOTLAB) on magnetic field with real blended virtual laboratory to improve students critical thinking skills. Journal of Physics: Conference Series, 2098(012019), 1-6. doi: https://doi.org/10.1088/1742-6596/2098/1/012019.

Simatupang, T. I. S., Siregar, N., & Sinulingga, K. (2021). Development of physics teaching materials with a guided inquiry model to improve high school students’ critical thinking skills. Journal of Physics: Conference Series, 1811(012131), 4-7. doi: https://doi.org/10.1088/1742-6596/1811/1/­­­­012131.

Sin, C. (2014). Epistemology, sociology, and learning and teaching in physics. Science Education, 98(2), 342-365. doi: https://doi.org/10.1002/sce.21100.

Singh, C., Belloni, M., & Christian, W. (2006). Improving students’ understanding of quantum mechanics. Physics Today, 59(8), 43-49. doi: https://doi.org/10.1063/1.2349732.

Soros, P., Ponkham, K., & Ekkapim, S. (2017). The results of STEM education methods for enhancing critical thinking and problem solving skill in physics the 10th grade level. In Proceedings of the 5th International Conference of Science Educators and Teachers (ISET) 2017, Phuket (Thailand), June 6-8, 2017. AIP Publishing.

Suryanti, Arifin, I. S. Z., & Baginda, U. (2018). The application of inquiry learning to train critical thinking skills on light material of primary school students. Journal of Physics: Conference Series, 1108(1). doi: https://doi.org/10.1088/1742-6596/1108/1/012128.

Sutarno, S., Setiawan, A., Kaniawati, I., & Suhandi, A. (2019). The development of higher order thinking virtual laboratory on photoelectric effect. Journal of Physics: Conference Series, 1157(032034), 1-7. doi: https://doi.org/10.1088/1742-6596/1157/3/032034.

Syarkowi, A. (2018). The effect of reading assignments in guided inquiry learning on students’ critical thinking skills. Journal of Physics: Conference Series, 1013(012078), 1-5. doi: https://doi.org/10.1088/1742-6596/1013/­1/­012078.

Thompson, C. (2011). Critical thinking across the curriculum: Process over output. International Journal of Humanities and Social Science, 1(9), 1-7.

Tiruneh, D. T., De Cock, M., Weldeslassie, A. G., Elen, J., & Janssen, R. (2017). Measuring critical thinking in physics: Development and validation of a critical thinking test in electricity and magnetism. International Journal of Science and Mathematics Education, 15(4), 663-682. doi: https://doi.org/10.1007/s10763-016-9723-0.

Tseng, K. H., Chang, C. C., Lou, S. J., & Chen, W. P. (2013). Attitudes towards science, technology, engineering and mathematics (STEM) in a project-based learning (PjBL) environment. International Journal of Technology and Design Education, 23(1), 87-102. doi: https://doi.org/10.1007/s10798-011-­9160-x.

Ubaidillah, M., Marwoto, P., Wiyanto, Rusilowati, A., Subali, B., Mindyarto, B. N., & Isnaeni, W. (2022). Development of habits of mind instruments in the context of basic physics practicum: EFA and Rasch model. Educational, Cultural, and Psychological Studies (ECPS), 26, 23-49.

Verawati, N. N. S. P., Hikmawati, Prayogi, S., & Bilad, M. R. (2021). Reflective practices in inquiry learning: Its effectiveness in training pre-service teachers’ critical thinking viewed from cognitive styles. Jurnal Pendidikan IPA Indonesia, 10(4), 505-514. doi: https://doi.org/10.15294/jpii.v10i4.31814.

Verawati, N. N. S. P., Prayogi, S., Gummah, S., Muliadi, A., & Yusup, M. Y. (2019). The effect of conflict-cognitive strategy in inquiry learning towards pre-service teachers’ critical thinking ability. Jurnal Pendidikan IPA Indonesia, 8(4), 529-537. doi: https://doi.org/10.15294/jpii.v8i4.21002.

Virtanen, A., & Tynjälä, P. (2019). Factors explaining the learning of generic skills: A study of university students’ experiences. Teaching in Higher Education, 24(7), 880-894. doi: https://doi.org/10.1080/13562517.2018.1515195.

Wahyudi, Verawati, N. N. S. P., Ayub, S., & Prayogi, S. (2019a). Effectiveness of inquiry-creative-process learning model to promote critical thinking ability of prospective physics teachers. Journal of Physics: Conference Series, 1417(1). doi: https://doi.org/10.1088/1742-6596/1417/1/012071.

Wahyudi, Verawati, N. N. S. P., Ayub, S., & Prayogi, S. (2019b). The effect of scientific creativity in inquiry learning to promote critical thinking ability of prospective teachers. International Journal of Emerging Technologies in Learning (IJET), 14(14), 122-131. doi: https://doi.org/10.3991/ijet.v14i14.9532.

Wartono, W., Hudha, M. N., & Batlolona, J. R. (2018). How are the physics critical thinking skills of the students taught by using inquiry-discovery through empirical and theorethical overview? Eurasia Journal of Mathematics, Science and Technology Education, 14(2), 691-697. doi: https://doi.org/10.12973/ejmste/80632.

Weatherspoon, D. L., Phillips, K., & Wyatt, T. H. (2015). Effect of electronic interactive simulation on senior bachelor of science in nursing students’ critical thinking and clinical judgment skills. Clinical Simulation in Nursing, 11(2), 126-133. doi: https://doi.org/10.1016/J.ECNS.2014.11.006.

Zain, A. R., & Jumadi. (2018). Effectiveness of guided inquiry based on blended learning in physics instruction to improve critical thinking skills of the senior high school student. Journal of Physics: Conference Series, 1097(1). doi: https://doi.org/10.1088/1742-6596/1097/1/012015.

ŽivkoviL., S. (2016). A Model of critical thinking as an important attribute for success in the 21st century. Procedia – Social and Behavioral Sciences, 232(April), 102-108. doi: https://doi.org/10.1016/j.sbspro.2016.10.034.




DOI: https://doi.org/10.7358/ecps-2023-028-ubai

Copyright (©) 2023 Mujib Ubaidillah, Hartono Hartono, Putut Marwoto, Wiyanto Wiyanto, Bambang Subali – Editorial format and Graphical layout: copyright (©) LED Edizioni Universitarie

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

 


Journal of Educational, Cultural and Psychological Studies (ECPS)
Registered by Tribunale di Milano (19/05/2010 n. 278)
Online ISSN 2037-7924 - Print ISSN 2037-7932

Research Laboratory on Didactics and Evaluation - Department of Education - "Roma Tre" University


Executive Editor: Gaetano Domenici - Associate Executive Editor & Managing  Editor: Valeria Biasci
Editorial Board: Eleftheria Argyropoulou - Massimo Baldacci - Joao Barroso - Richard Bates - Christofer Bezzina - Paolo Bonaiuto - Lucia Boncori - Pietro Boscolo - Sara Bubb  - Carlo Felice Casula - Jean-Émile Charlier - Lucia Chiappetta Cajola - Carmela Covato - Jean-Louis Derouet - Peter Early - Franco Frabboni - Constance Katz - James Levin - Pietro Lucisano  - Roberto Maragliano - Romuald Normand - Michael Osborne - Donatella Palomba - Michele Pellerey - Clotilde Pontecorvo - Vitaly V. Rubtzov - Jaap Scheerens - Noah W. Sobe - Francesco Susi - Giuseppe Spadafora - Pat Thomson
Editorial Staff: Fabio Alivernini - Guido Benvenuto - Anna Maria Ciraci - Massimiliano Fiorucci - Luca Mallia - Massimo Margottini - Giovanni Moretti - Carla Roverselli 
Editorial Secretary:
Nazarena Patrizi 


Referee List


© 2001 LED Edizioni Universitarie di Lettere Economia Diritto