Misconoscenze di fisica nella scuola del primo ciclo: un questionario didattico
Abstract
PHYSICS MISCONCEPTIONS IN FIRST CYCLE SCHOOL: AN EDUCATION QUESTIONNAIRE
Abstract
The achievement of an adequate level of scientific knowledge is unanimously recognized as an important milestone, not only for training future scientists but above all to enable the new generations to possess important skills for responsible and critically informed citizenship. Regarding Italy, international comparisons highlight the accentuation of specific critical issues in this area. Concerning the search for teaching actions aimed at improving the understanding of physical phenomena, it remains fundamental to understand the preconceptions from which students start and the cognitive obstacles that these entail. We have prepared and validated a questionnaire with the aim of highlighting the most common critical elements in the explanation of physical phenomena by students aged 11-14. The collected data confirm the presence of widespread misconceptions already reported in the literature, which it is appropriate to bring to the attention of teachers. The questionnaire is complemented by formative feedback intended to provide initial indications for their revision.
Keywords
Full Text:
PDFReferences
Allen, M. (2014). Misconceptions in primary science (2nd ed.). Maidenhead, UK: Open University Press.
Biddulph, F., & Osborne, R. (1984). Pupils idea about floating and sinking. Review in Science Education, 14(1), 114-124.
https://doi.org/10.1007/BF02356797
Borges, A.T., & Gilbert, J.K. (1999). Mental models of electricity. International Journal of Science Education, 21(1), 95-117.
https://doi.org/10.1080/095006999290859
Brook, A., Driver, R., & Hind, D. (1989). The development of pupils' understanding of physical characteristics of air across the age range 5-16 years. Leeds: Centre for Studies in Science and Mathematics Education, University of Leeds.
Caillot, M. (1993). Learning electricity and cognitive modeling. In Advanced educational technologies for mathematics and science (pp. 151-164). Berlin: Springer.
https://doi.org/10.1007/978-3-662-02938-1_5
Calvani, A., Chiappetta Cajola, L., Leone, M., & Torre, M. (2022). Potenziare la formazione degli insegnanti sulla didattica scientifica. OrizzonteScuola, 30 settembre.
https://www.orizzontescuola.it/potenziare-la-formazione-degli-insegnanti-sulla-didattica-scientifica-le-linee-dazione-dei-pedagogisti/
Cosgrove, M., Osborne, R., & Carr, M. (1985). Children's intuitive ideas on electric current and the modi cation of those ideas. In R. Duit, W. Jung, & C. von Rhoneck (Eds.), Aspects of understanding electricity: Proceedings of an international workshop (pp. 247-256). Kiel: IPN.
Di Sessa, A.A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10(2-3), 105-225.
https://doi.org/10.1080/07370008.1985.9649008
Driver, R., Squires, A., Rushworth, P., & Wood-Robinson, V. (1994). Making sense of secondary science research into children's ideas. London - New York: Routledge.
https://doi.org/10.4324/9780203823583
Erickson, G.L. (1994). Pupils understanding of magnetism in a practical assessment context: The relationship between content, process and progression. In P. Fensham, R. Gunstone, & R. White (Eds.), The content of science: A constructivist approach to its teaching and learning (pp. 80-97). London: The Falmer Press.
Erickson, G.L., & Tiberghien, A. (1985). Heat and temperature. In R. Driver, E. Guesne, & A. Tiberghien (Eds.), Children's ideas in science (pp. 52-84). Philadelphia: Open University Press.
Feher, E., & Meyer, K.R. (1994). Children's conceptions of color. Journal of Research in Science Teaching, 29(5), 505-520.
https://doi.org/10.1002/tea.3660290506
Galili, I., & Bar, V. (1997). Children's operational knowledge about weight. International Journal of Science Education, 19(3), 317-340.
https://doi.org/10.1080/0950069970190305
Gilbert, J., & Watts, D. (1983). Concepts, misconceptions and alternative conceptions: Changing perspectives in science education. Studies in Science Education, 10, 61-98.
https://doi.org/10.1080/03057268308559905
Guesne, E. (1985). Light. In R. Driver, E. Guesne, & A. Tiberghien (Eds.), Children's ideas in science (pp. 11-32). Philadelphia: Open University Press.
Halloun, I.A., & Hestenes, D. (1985a). The initial knowledge state of college physics students. American Journal of Physics, 53(11), 1043-1055.
https://doi.org/10.1119/1.14030
Halloun, I.A., & Hestenes, D. (1985b). Common sense concepts about motion. American Journal of Physics, 53(11), 1056-1065.
https://doi.org/10.1119/1.14031
Israel, G. (2008). Chi sono i nemici della scienza. Riflessioni su un disastro educativo e culturale e documenti di malascienza. Torino: Lindau.
Kohn, A.S. (1993). Preschoolers' reasoning about density: Will it float? Child Development, 64(6), 1637-1650.
https://doi.org/10.1111/j.1467-8624.1993.tb04204.x
PMid:8112111
Leone, M. (2014). History of physics as a tool to detect the conceptual difficulties experienced by students: The case of simple electric circuits in primary education. Science & Education, 23, 923-953.
https://doi.org/10.1007/s11191-014-9676-z
Leone, M. (2020). Insegnare e apprendere fisica nella scuola dell'infanzia e primaria.Milano: Mondadori Educational.
Mazens, K., & Lautrey, J. (2003). Conceptual change in physics: Children's naive representations of sound. Cognitive Development, 18, 159-176.
https://doi.org/10.1016/S0885-2014(03)00018-2
Miur - Ministero dell'Istruzione, dell'Università e della Ricerca (2012). Indicazioni nazionali per il curricolo della scuola dell'infanzia e del primo ciclo d'istruzione. Annali della Pubblica Istruzione, Numero speciale.
Neidorf, T., Arora, A., Erberber, E., Tsokodayi, Y., & Mai, T. (2020). Student misconceptions and errors in physics and mathematics: Exploring data from TIMSS and TIMSS Advanced. London: SpringerOpen.
https://doi.org/10.1007/978-3-030-30188-0
Piaget, J. (1972). The child's conception of physical causality. Totowa, NJ: Littlefield, Adams.
Piaget, J. (1974). Understanding causality. Oxford: Norton.
Piaget, J., & Chollet, M. (1973). Le problème de l'attraction, à propos des aimants.In J. Piaget et al., La formation de la notion de force (pp. 223-242). Paris: Presses Universitaires de France.
Piaget, J., & Inhelder, B. (1974). The child's construction of physical quantities. London: Routledge.
Posner, G.J., Strike, K.A., Hewson, P.W., & Gertzog, W.A. (1982). Toward a theory of conceptual change. Science Education, 66(2), 211-227.
https://doi.org/10.1002/sce.3730660207
Rinaudo, M., & Leone, M. (2024). History of physics as a heuristic device to anticipate students' ideas: The case of electrostatics. Physics Education, 59, 015019.
https://doi.org/10.1088/1361-6552/ad08cd
Saltiel, E., & Hartmann, M. (2005). Comment enseigner la matérialité de l'air? In Fondation La main à la pâte.
https://www.fondation-lamap.org/fr/page/11933/comment-enseigner-la-materialite-de-lair
Slavin, R.E., Lake, C., Hanley, P., & Thurston, A. (2014). Experimental evaluations of elementary science programs: A best‐evidence synthesis. Journal of Research in Science Teaching, 51(7), 870-901.
https://doi.org/10.1002/tea.21139
Smith, C., Carey, S., & Wiser, M. (1985). On differentiation: A case study of development of the concepts of size, weight, and density. Cognition, 21, 177-237.
https://doi.org/10.1016/0010-0277(85)90025-3
PMid:3830547
Tytler, R. (1998). Children's conception of air pressure: Exploring the nature of conceptual change. International Journal of Science Education, 20(8), 929-958.
https://doi.org/10.1080/0950069980200803
Vosniadou, S. (2019). The development of students' understanding of science. Frontiers in Education, 4, 32.
https://doi.org/10.3389/feduc.2019.00032
Vosniadou, S., & Brewer, W.F. (1992). Mental models of the earth: A study of conceptual change in childhood. International Journal of Science Education, 24(4), 535-585.
https://doi.org/10.1016/0010-0285(92)90018-W
Vosniadou, S., Ioannides, C., Dimitrakopolou, A., & Papademetriou, E. (2001). Designing learning environments to promote conceptual change in science. Learning and Instruction, 11, 381-419.
https://doi.org/10.1016/S0959-4752(00)00038-4
West, E., & Wallin, A. (2013). Students' learning of a generalized theory of sound transmission from a teaching-learning sequence about sound, hearing and health. International Journal of Science Education, 35(6), 980-1011.
https://doi.org/10.1080/09500693.2011.589479
DOI: https://doi.org/10.7358/ecps-2024-029-calv
Copyright (©) 2024 Matteo Torre, Antonio Calvani, Matteo Leone – Editorial format and Graphical layout: copyright (©) LED Edizioni Universitarie

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Journal of Educational, Cultural and Psychological Studies (ECPS)
Registered by Tribunale di Milano (19/05/2010 n. 278)
Online ISSN 2037-7924 - Print ISSN 2037-7932
Research Laboratory on Didactics and Evaluation - Department of Education - "Roma Tre" University
Executive Editor: Gaetano Domenici - Associate Executive Editor & Managing Editor: Valeria Biasci
Editorial Board: Eleftheria Argyropoulou - Massimo Baldacci - Joao Barroso - Richard Bates - Christofer Bezzina - Paolo Bonaiuto - Lucia Boncori - Pietro Boscolo - Sara Bubb - Carlo Felice Casula - Jean-Émile Charlier - Lucia Chiappetta Cajola - Carmela Covato - Jean-Louis Derouet - Peter Early - Franco Frabboni - Constance Katz - James Levin - Pietro Lucisano - Roberto Maragliano - Romuald Normand - Michael Osborne - Donatella Palomba - Michele Pellerey - Clotilde Pontecorvo - Vitaly V. Rubtzov - Jaap Scheerens - Noah W. Sobe - Francesco Susi - Giuseppe Spadafora - Pat Thomson
Editorial Staff: Fabio Alivernini - Guido Benvenuto - Anna Maria Ciraci - Massimiliano Fiorucci - Luca Mallia - Massimo Margottini - Giovanni Moretti - Carla Roverselli
Editorial Secretary:Nazarena Patrizi
© 2001 LED Edizioni Universitarie di Lettere Economia Diritto